Advertisement

Behavior Trees with Stateful Tasks

  • Andreas KlöcknerEmail author

Abstract

The behavior tree formalism as introduced recently to the application of mission management of unmanned aerial vehicles does provide for internal memory of mission plans. This is an important drawback for even simple plans such as waypoint sequences, because the information about visited waypoints must be stored outside of the plan execution engine. In this paper, two approaches are presented in order to provide tasks with states inside behavior trees: The first allows to embed regular state machines in a specialized behavior tree task. The second provides new memory and reset tasks in order to store information directly in the tree. Both approaches are shown to solve the waypoint following plan and promise to be applicable to a much broader range of mission management problems.

Keywords

Memory Task State Machine Unmanned Aerial Vehicle Task Type Behavior Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Champandard, A.J.: Behavior Trees for Next-Gen Game AI. In: Game Developers Conference, Lyon, France, Decembre 3-4 (2007), http://aigamedev.com/insider/presentation/behavior-trees/
  2. 2.
    Colledanchise, M., Marzinotto, A., Ögren, P.: Performance analysis of stochastic behavior trees. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3265–3272 (May 2014), doi:10.1109/ICRA.2014.6907328Google Scholar
  3. 3.
    Elmqvist, H., Gaucher, F., Mattsson, S.E., Dupont, F.: State machines in modelica. In: Otter, M., Zimmer, D. (eds.) Proceedings of 9th International Modelica Conference, Munich, Germany, September 3-5. Linköping Electronic Conference Proceedings, vol. 76, pp. 37–46. Modelica Association and Linköping University Electronic Press (2012), doi:10.3384/ecp1207637, ISBN: 978-91-7519-826-2, ISSN: 1650-3686, eISSN: 1650-3740Google Scholar
  4. 4.
    Isla, D.: Handling complexity in the Halo 2 AI. In: Game Developers Conference (2005), http://www.naimadgames.com/publications/gdc05/gdc05.doc
  5. 5.
    Klöckner, A.: Behavior Trees for UAV Mission Management. In: Horbach, M. (ed.) INFORMATIK 2013: Informatik Angepasst an Mensch, Organisation und Umwelt, Koblenz, Germany, September 16-20. GI-Edition-Lecture Notes in Informatics (LNI) - Proceedings, vol. P-220, pp. 57–68. Gesellschaft für Informatik e.V (GI), Köllen Druck + Verlag GmbH, Bonn (2013), http://www.gi.de/service/publikationen/lni/ ISBN 978-3-88579-614-5Google Scholar
  6. 6.
    Klöckner, A.: Interfacing Behavior Trees with the World Using Description Logic. In: AIAA Guidance, Navigation and Control Conference, Boston, MA, August 19-22. AIAA. AIAA 2013-4636 (2013), doi:10.2514/6.2013-4636Google Scholar
  7. 7.
    Klöckner, A.: The Modelica BehaviorTrees Library: Mission Planning in Continuous-Time for Unmanned Aircraft. In: Tummescheit, H., Årzén, K.-E. (eds.) Proceedings of the 10th International Modelica Conference, Lund, Sweden, March 10-12. Linköping Electronic Conference Proceedings, vol. 96, pp. 727–736. Modelica Association and Linköping University Electronic Press (2014), doi:10.3384/ECP14096727, ISBN: 978-91-7519-380-9, ISSN: 1650-3686, eISSN: 1650-3740Google Scholar
  8. 8.
    Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unified behavior trees framework for robot control. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5420–5427 (May 2014), doi:10.1109/ICRA.2014.6907656Google Scholar
  9. 9.
    Millington, I., Funge, J.: Artificial intelligence for games, 2nd edn. Morgan Kaufmann, Burlington (2009) ISBN 978-0-12-374731-0Google Scholar
  10. 10.
    Ögren, P.: Increasing Modularity of UAV Control Systems using Computer Game Behavior Trees. In: AIAA Guidance, Navigation and Control Conference, Minneapolis, Minnesota, August 13-16. AIAA. AIAA 2012-4458 (2012), doi:10.2514/6.2012-4458Google Scholar
  11. 11.
    Sagredo-Olivenza, I., Gómez-Martín, M.A., González-Calero, P.A.: Un modelo integrador de máquinas de estados y árboles de comportamiento para videojuegos. In: Camacho, D., Gómez-Martın, M.A., González-Calero, P.A. (eds.) Proceedings 1st Congreso de la Sociedad Española para las Ciencias del Videojuego (CoSECivi), Barcelona, Spain, June 24. Workshop Proceedings, vol. 1196, pp. 1613–1673. Sun SITE Central Europe, CEUR (2014), http://ceur-ws.org/Vol-1196/cosecivi14_submission_27.pdf

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.DLR German Aerospace CenterInstitute of System Dynamics and ControlOberpfaffenhofenGermany

Personalised recommendations