Advertisement

A New Observer for Range Identification in Perspective Vision Systems

  • Victor GibertEmail author
  • Laurent Burlion
  • Abdelhamid Chriette
  • Josep Boada-Bauxell
  • Franck Plestan

Abstract

Automatic guidance of flying vehicle usually needs external information. GPS (Global Positionning System) is a worldwide technology which provides to the guided system its deviations with respect to its guidance objective. Nevertheless, this technology is not available everywhere (indoor evironment), everytime (in case of failure) and not precise enough to ensure critical operations as landing a civil aircraft. Current civil aircraft are able to land autonomously on a runway thanks to ILS (Instrument Landing System) or differential GPS. However, these equipment are expensive and can fail. In frame of the future aircraft, manufacturers like AIRBUS company study the possibility to make aircraft landing everywhere (unequipped or unknown runway) without using informations from external systems.

Keywords

Perspective Projection Camera Frame Noisy Measurement Nonlinear Observer Slide Mode Observer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agin, G.: Computer vision systems for industrial inspection and assembly. Computer 13(5), 11–20 (1980)CrossRefGoogle Scholar
  2. 2.
    Bourquardez, O., Chaumette, F.: Visual servoing of an airplane for alignment with respect to a runway. In: IEEE International Conference on Robotics and Automation, Roma, Italia (2007)Google Scholar
  3. 3.
    Chaumette, F., Hutchinson, S.: Visual servo control. i. basic approaches. IEEE Robotics Automation Magazine 13(4), 82–90 (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, X., Kano, H.: A new state observer for perspective systems. IEEE Transactions on Automatic Control 47(4), 658–663 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Coutard, L., Chaumette, F., Pflimlin, J.M.: Automatic landing on aircraft carrier by visual servoing. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2843–2848 (2011)Google Scholar
  6. 6.
    Dahl, O., Nyberg, F., Holst, J., Heyden, A.: Linear design of a nonlinear observer for perspective systems. In: IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain (2005)Google Scholar
  7. 7.
    De Luca, A., Oriolo, G., Giordano, P.: On-line estimation of feature depth for image-based visual servoing schemes. In: 2007 IEEE International Conference on Robotics and Automation, pp. 2823–2828 (2007)Google Scholar
  8. 8.
    Dixon, W.E., Fang, D., Dawson, D.M., Flynn, T.J.: Range identification for perspective vision systems. IEEE Transactions on Automatic Control 48(12), 2232–2238 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
    El Tannoury, C., Moussaoui, S., Plestan, F., Romani, N., Pita-Gil, G.: Synthesis and application of nonlinear observers for the estimation of tire effective radius and rolling resistance of an automotive vehicle. IEEE Transactions on Control Systems Technology 21(6), 2408–2416 (2013)CrossRefGoogle Scholar
  10. 10.
    Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems, application to bioreactors. IEEE Transactions on Automatic Control 37(6), 875–880 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gibert, V., Puyou, G.: Landing of a transport aircraft using image based visual servoing. In: 9th IFAC Symposium on Nonlinear Control Systems (NOLCOS), Toulouse, France (2013)Google Scholar
  12. 12.
    Giordano, P., De Luca, A., Oriolo, G.: 3d structure identification from image moments. In: IEEE International Conference on Robotics and Automation, Pasadena, California, USA, pp. 93–100 (2008)Google Scholar
  13. 13.
    Gonçalves, T., Azinheira, J., Rives, P.: Homography-based visual servoing of an aircraft for automatic approach and landing. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA (2010)Google Scholar
  14. 14.
    Gui, Y., Guo, P., Zhang, H., Lei, Z., Zhou, X., Du, J., Yu, Q.: Airborne vision-based navigation method for uav accuracy landing using infrared lamps. Journal of Intelligent & Robotic Systems 72(2), 197–218 (2013)CrossRefGoogle Scholar
  15. 15.
    Jankovic, M., Ghosh, B.K.: Visually guided ranging from observations of points, lines and curves via an identifier based nonlinear observer. Systems and Control Letters 25(1), 63–73 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Karagiannis, D., Astolfi, A.: A new solution to the problem of range identification in perspective vision systems. IEEE Transactions on Automatic Control 50(12), 2074–2077 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Krener, A.J., Respondek, W.: Nonlinear observers with linearizable error dynamics. SIAM Journal on Control and Optimization 23(2), 197–216 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Le Bras, F., Hamel, T., Barat, C., Mahony, R.: Nonlinear image-based visual servo controller for automatic landing guidance of a fixed-wing aircraft. In: European Control Conference, Budapest, Hungary (2009)Google Scholar
  19. 19.
    Lebastard, V., Aoustin, Y., Plestan, F.: Estimation of absolute orientation for a bipedal robot: Experimental results. IEEE Transactions on Robotics 27(1), 170–174 (2011)CrossRefGoogle Scholar
  20. 20.
    Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control 76(9-10), 924–941 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    de Plinval, H., Morin, P., Mouyon, P., Hamel, T.: Visual servoing for underactuated vtol uavs: a linear homography-based framework. International Journal of Robust and Nonlinear Control (2013)Google Scholar
  22. 22.
    Sanderson, A., Weiss, L.: Adaptive visual servo control of robots. In: Pugh, A. (ed.) Robot Vision, International Trends in Manufacturing Technology, pp. 107–116 (1983)Google Scholar
  23. 23.
    Trisiripisal, P., Parks, M.R., Abbott, A.L., Liu, T., Fleming, G.A.: Stereo analysis for vision-based guidance and control of aircraft landing. In: 44th AIAA Aerospace Science Meeting and Exhibit., Reno, Nevada, USA (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Victor Gibert
    • 1
    Email author
  • Laurent Burlion
    • 2
  • Abdelhamid Chriette
    • 3
  • Josep Boada-Bauxell
    • 1
  • Franck Plestan
    • 1
    • 3
  1. 1.Airbus Operations S.A.S.ToulouseFrance
  2. 2.ONERA, DCSDToulouseFrance
  3. 3.Ecole Centrale de Nantes - IRCCyNLUNAM UniversitéNantesFrance

Personalised recommendations