CubeSat Attitude Estimation via AUKF Using Magnetometer Measurements and MRPs

  • Francesco SanfedinoEmail author
  • Marco Scardino
  • Jérémie Chaix
  • Stéphanie Lizy-Destrez


In this article the Attitude and Control system of a CubeSat is presented. The attitude estimation design approach used is based on Adaptative Unscented Kalman Filter (AUKF) using three-axismagnetometermeasurements.A set of modified Rodrigues Parameters (MRPs) is used to evaluate the attitude. Finally in order to have an complete ADCS system two control laws are introduced (Bdot and Sliding Mode) to best simulate a real CubeSat mission. The first one allows the spacecraft the control during the detumbling phase (phase at high angular rates) and in case of reaction wheels saturation and the second one is used for the nominal control (phase at low angular rates).


Convergence Time Angular Rate Unscented Kalman Filter Attitude Control System Sigma Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellar, A., Seba, B., Mohammed, A., Sweeting, M.N.: Tree axis attitude control using sliding mode for leo microsatelliteGoogle Scholar
  2. 2.
    Crassidis, J.L., Markiey, F.L.: Attitude estimation using modified rodrigues parameters (1996)Google Scholar
  3. 3.
    Crassidis, J.L., Markley, F.L.: Sliding mode control using modified rodrigues parameters. Journal of Guidance, Control, and Dynamics 19(6), 1381–1383 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Finlay, C.C., Maus, S., Beggan, C.D., Bondar, T.N., Chambodut, A., Chernova, T.A., Chulliat, A., Golovkov, V.P., Hamilton, B., Hamoudi, M., et al.: International geomagnetic reference field: the eleventh generation. Geophysical Journal International 183(3), 1216–1230 (2010)CrossRefGoogle Scholar
  5. 5.
    Flatley, T., Morgenstern, W., Reth, A., Bauer, F.: A b-dot acquisition controller for the radarsat spacecraft. In: NASA Conference Publication, pp. 79–90. NASA (1997)Google Scholar
  6. 6.
    Heidt, H., Puig-Suari, J., Moore, A., Nakasuka, S., Twiggs, R.: Cubesat: A new generation of picosatellite for education and industry low-cost space experimentation (2000)Google Scholar
  7. 7.
    Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proceedings of the IEEE 92(3), 401–422 (2004)CrossRefGoogle Scholar
  8. 8.
    Lozano, J.G.C., Carrillo, L.G., Dzul, A., Lozano, R.: Spherical simplex sigma-point kalman filters: a comparison in the inertial navigation of a terrestrial vehicle. In: American Control Conference, pp. 3536–3541. IEEE (2008)Google Scholar
  9. 9.
    Lucas, W., Rouanne-Labe, A., Grave, J., Peille, P., Lizy-Destrez, S.: Jumpsat: Qualifying three equipments in one cubesat mission (2013)Google Scholar
  10. 10.
    Pierl, C.: Preliminary design of the attitude control system and operational mode transition of the jumpsat project. Final report (2013)Google Scholar
  11. 11.
    Psiaki, M.L., Martel, F., Pal, P.K.: Three-axis attitude determination via kalman filtering of magnetometer data. Journal of Guidance, Control, and Dynamics 13(3), 506–514 (1990)CrossRefGoogle Scholar
  12. 12.
    Schaub, H., Junkins, J.L.: Stereographic orientation parameters for attitude dynamics: A generalization of the rodrigues parameters. Journal of the Astronautical Sciences 44(1), 1–19 (1996)MathSciNetGoogle Scholar
  13. 13.
    Soken, H.E., Sakai, S.-I.: Adaptive unscented kalman filter for small satellite attitude estimation (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Francesco Sanfedino
    • 1
    Email author
  • Marco Scardino
    • 1
  • Jérémie Chaix
    • 1
  • Stéphanie Lizy-Destrez
    • 1
  1. 1.Institut Supérieur de l’Aéronautique et de l’EspaceToulouseFrance

Personalised recommendations