Advertisement

Flexible Launch Vehicle Control Using Robust Observer-Based Controller Obtained through Structured H ∞  Synthesis

  • Emmanuel ChambonEmail author
  • Pierre Apkarian
  • Laurent Burlion

Abstract

Control of a flexible launch vehicle in the atmospheric ascent phase is highly challenging as it involves multiple concurrent design requirements. This ranges from reduction of the angle of attack in face of wind, minimum gain-phase and parametric margins as well as flexible modes attenuation. In this work, we discuss recently available non-smooth optimization techniques as a central tool to solve this problem. We consider designing an observer-based controller based on a Kalman filter suitably augmented with Dryden wind dynamics. We suggest a nonconservative approach to handle model uncertainties based upon multiple models of the launcher. This preliminary work aims at testing the potential of non-smooth controller tuning on a generic launcher model. It will serve as a stepping stone for a more in-depth study of the benchmark developed by M. Ganet at Airbus Defence and Space.

Keywords

flexible launch vehicle robust control observer-based controller structured H ∞  synthesis multiple models unknown input 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbas-Turki, M., Duc, G., Clément, B., Theodoulis, S.: Robust gain scheduled control of a space launcher by introducing LQG/LTR ideas in the NCF robust stabilisation problem. In: 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 2393–2398 (December 2007)Google Scholar
  2. 2.
    Alazard, D.: Introduction to Kalman filtering. ISAE – Institut Supérieur de l’Aéronautique et de l’Espace (December 2011)Google Scholar
  3. 3.
    Alazard, D., Imbert, N., Clément, B., Apkarian, P.: Launcher attitude control: some additional design and optimization tools. In: CNES/EADS Conference on Launcher Technology, Madrid (November 2003)Google Scholar
  4. 4.
    Apkarian, P.: Tuning controllers against multiple design requirements. In: American Control Conference Proceedings, Washington, USA, pp. 3888–3893 (June 2013)Google Scholar
  5. 5.
    Apkarian, P., Noll, D.: Nonsmooth H  ∞  synthesis. IEEE Transactions on Automatic Control 51(1), 71–86 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Burke, J.V., Henrion, D., Lewis, A.S., Overton, M.L.: HIFOO - a MATLAB package for fixed-order controller design and H  ∞  optimization. In: 5th IFAC Symposium on Robust Control Design, Toulouse, France (August 2006)Google Scholar
  7. 7.
    Doyle, J., Glover, K., Khargonekar, P., Francis, B.A.: State space solutions to standard h2 and H  ∞  control problems. IEEE Transactions on Automatic Control 34, 831–847 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dryden, H.L., Kuethe, A.M.: Turbulence in wind tunnel measurements. Technical Report 342, National Advisory Commitee for Aeronautics, Washington (August 1929)Google Scholar
  9. 9.
    Dubanchet, V., Saussié, D., Bérard, C., Saydy, L., Gourdeau, R.: Robust control of a launch vehicle in atmospheric ascent based on guardian maps. In: American Control Conference, ACC 2012, Fairmont Queen Elizabeth, Montréal, Canada, pp. 938–943 (June 2012)Google Scholar
  10. 10.
    Gahinet, P., Apkarian, P.: A linear matrix inequality approach to H  ∞  control. International Journal of Robust and Nonlinear Control 4, 421–448 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gahinet, P., Apkarian, P.: Structured H  ∞  synthesis in MATLAB. In: Proceedings of the 18th IFAC World Congress, Milan, pp. 1435–1440 (2011)Google Scholar
  12. 12.
    Ganet-Schoeller, M., Ducamp, M.: LPV control for flexible launcher. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada (July 2010)Google Scholar
  13. 13.
    Hostetter, G.H., Meditch, J.S.: Brief paper on the generalization of observers to systems with unmeasurable unknown inputs. Automatica 9, 721–724 (1973)CrossRefzbMATHGoogle Scholar
  14. 14.
    Jacquemin, B., Voiron, T.: La détermination du profil du vent pour les activités spatiales. La Météorologie (33), 45–55 (May 2001)Google Scholar
  15. 15.
    Jang, J.-W., Alaniz, A., Hall, R., Bedrossian, N., Hall, C., Ryan, S., Jackson, M.: Ares I flight control system design. In: Proceedings of AIAA Guidance, Navigation, and Control Conference (2010)Google Scholar
  16. 16.
    Keegan, W.B.: Terrestrial environment (climatic) criteria handbook for use in aerospace vehicle development. Technical report (August 2000)Google Scholar
  17. 17.
    Knoblauch, M., Saussié, D., Bérard, C.: Structured H  ∞  control for a launch vehicle. In: American Control Conference, ACC 2012, Fairmont Queen Elizabeth, Montréal, Canada, pp. 967–972 (June 2012)Google Scholar
  18. 18.
    Radke, A., Gao, Z.: A survey of state and disturbance observers for practitioners. In: American Control Conference, Minnesota, USA (June 2006)Google Scholar
  19. 19.
    Taylor, G.I.: Statistical theory of turbulence. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 151(873), 444–454 (1935)CrossRefGoogle Scholar
  20. 20.
    Terrell, W.J.: Stability and Stabilization: An Introduction. Cloth (2009)Google Scholar
  21. 21.
    Vaughan, W.W., Scoggins, J.R., Smith, O.E.: Role of applied meteorology in the development of large space vehicles. Bulletin of American Meteorological Society 44, 157–174 (1963)Google Scholar
  22. 22.
    Voinot, O., Alazard, D., Piquereau, A.: A robust multi-objective synthesis applied to launcher attitude control. In: 15th IFAC Symposium on Automatic Control in Aerospace (September 2001)Google Scholar
  23. 23.
    von Kármán, T., Howarth, L.: On the statistical theory of turbulence. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 164(917), 192–215 (1938)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Emmanuel Chambon
    • 1
    Email author
  • Pierre Apkarian
    • 1
  • Laurent Burlion
    • 1
  1. 1.The French Aerospace LabOneraToulouseFrance

Personalised recommendations