Advertisement

On-Line Safe Flight Envelope Determination for Impaired Aircraft

  • Thomas LombaertsEmail author
  • Stefan Schuet
  • Diana Acosta
  • John Kaneshige

Abstract

The design and simulation of an on-line algorithm which estimates the safe maneuvering envelope of aircraft is discussed in this paper. The trim envelope is estimated using probabilistic methods and efficient high-fidelity model based computations of attainable equilibriumsets. From this trim envelope, a robust reachability analysis provides the maneuverability limitations of the aircraft through an optimal control formulation. Both envelope limits are presented to the flight crew on the primary flight display. In the results section, scenarios are considered where this adaptive algorithm is capable of computing online changes to the maneuvering envelope due to impairment. Furthermore, corresponding updates to display features on the primary flight display are provided to potentially inform the flight crew of safety critical envelope alterations caused by the impairment.

Keywords

Pitching Moment Bank Angle Fault Tolerant Control Path Angle AIAA Guidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Statistical summary of commercial jet airplane accidents – worldwide operations 1959 - 2011. Technical report, Boeing Commercial Aircraft (July 2012), http://www.boeing.com/news/techissues/pdf/statsum.pdf
  2. 2.
    Cast safety enhancement plan. Technical Report SE207, Commercial Aviation Safety Team (2013), http://www.skybrary.aero/index.php/Portal:CAST_SE_Plan
  3. 3.
    Bacon, B.J.: Quaternion based control architecture for determining controllability/maneuverability limits. In: Guidance, Navigation, and Control and Co-located Conferences, AIAA 2012-5028. American Institute of Aeronautics and Astronautics (2012)Google Scholar
  4. 4.
    Nithin Govindarajan. An optimal control approach for estimating aircraft command margin – with applications to loss-of-control prevention. Masters thesis, Delft University of Technology (October 2012), http://repository.tudelft.nl/view/ir/uuid%3A48dbad61-728a-4c7e-ba3e-cf8382ef1cef/
  5. 5.
    Kitsios, I., Lygeros, J.: Launch pad abort flight envelope computation for a personnel launch vehicle using reachability. In: AIAA Guidance, Control and Navigation, AIAA 2005-6150 (August 2005)Google Scholar
  6. 6.
    Koolstra, H.J., Damveld, H.J., Mulder, J.A.: Envelope determination of damaged aircraft. In: Guidance, Navigation, and Control and Co-located Conferences, AIAA 2012-4699. American Institute of Aeronautics and Astronautics (August 2012)Google Scholar
  7. 7.
    Kwatny, H.G., Allen, R.C.: Safe set maneuverability of impaired aircraft. In: Guidance, Navigation, and Control and Co-located Conferences, AIAA 2012-4405. American Institute of Aeronautics and Astronautics (August 2012)Google Scholar
  8. 8.
    Lichter, M.D., Bateman, A.J., Balas, G.: Flight test evaluation of a rum-time stability margin estimation tool. In: AIAA Guidance, Navigation and Control Conference, AIAA 2009-6257 (August 2009)Google Scholar
  9. 9.
    Lombaerts, T.: Fault Tolerant Flight Control – A Physical Model Approach. Phd dissertation, Delft University of Technology (May 2010), http://repository.tudelft.nl/view/ir/uuid%3A538b0174-fe84-43af-954d-02f256b2ec50/
  10. 10.
    Lombaerts, T., Van Oort, E., Chu, Q., Mulder, J.A., Joosten, D.: On-line aerodynamic model structure selection and parameter estimation for fault tolerant control. Journal of Guidance, Control and Dynamics 33(3), 707–723 (2010)CrossRefGoogle Scholar
  11. 11.
    Lombaerts, T., Schuet, S., Acosta, D., Kaneshige, J., Shish, K., Martin, L.: Piloted simulator evaluation of maneuvering envelope information for flight crew awareness. In: AIAA GNC Conference, AIAA-2015-1546 (January 2015)Google Scholar
  12. 12.
    Lombaerts, T., Schuet, S., Wheeler, K., Acosta, D., Kaneshige, J.: Safe maneuvering envelope estimation based on a physical approach. In: AIAA Guidance, Navigation and Control (GNC) Conference, AIAA-2013-4618 (August 2013)Google Scholar
  13. 13.
    Lombaerts, T.J.J., Chu, Q.P., Mulder, J.A., Joosten, D.A.: Real time damaged aircraft model identification for reconfiguring control. In: Proceedings of the AIAA AFM Conference and Exhibit, AIAA-2007-6717 (August 2007)Google Scholar
  14. 14.
    Looye, G., Bennani, S.: Description and analysis of the research civil aircraft model (rcam). Technical report TP-088-27, Group for Aeronautical Research and Technology in Europe GARTEUR (1997)Google Scholar
  15. 15.
    Lygeros, J.: On reachability and minimum cost optimal control. Automatica 40, 917–927 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Menon, P., Kim, J., Sengupta, P., Vaddi, V., Yang, B.-J., Kwan, J.: Onboard estimation of impaired aircraft performance envelope. In: Guidance, Navigation, and Control and Co-located Conferences, AIAA 2011-6688, American Institute of Aeronautics and Astronautics (August 2011)Google Scholar
  17. 17.
    Meuleau, N., Neukom, C., Plaunt, C., Smith, D., Smith, T.: The emergency landing planner experiment. In: ICAPS-11 Scheduling and Planning Applications Workshop (2011)Google Scholar
  18. 18.
    Mitchell, I.M.: The flexible, extensible and efficient toolbox of level set methods. Journal of Scientific Computing 35, 300–329 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Oort, E.V., Chu, P., Mulder, J.A.: Advances in Aerospace Guidance, Navigation and Control. In: Holzapfel, F., Theil, S. (eds.) Maneuvering Envelope Determination through Reachability Analysis, pp. 91–102. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Pandita, R., Chakraborty, A., Seiler, P., Balas, G.: Reachability and region of attraction analysis applied to gtm dynamic flight envelope assessment. In: AIAA Guidance, Navigation and Control Conference, AIAA 2009-6258 (August 2009)Google Scholar
  21. 21.
    Schuet, S., Lombaerts, T., Acosta, D., Wheeler, K., Kaneshige, J.: An adaptive nonlinear aircraft maneuvering envelope estimation approach for online applications. In: AIAA SciTech Guidance, Navigation and Control (GNC) Conference, AIAA 2014-0268 (January 2014)Google Scholar
  22. 22.
    Shin, J.-Y., Belcastro, C.: Robustness analysis and reliable flight regime estimation of an integrated resilient control system for a transport aircraft. In: AIAA Guidance, Navigation and Control Conference, AIAA 2008-6656 (August 2008)Google Scholar
  23. 23.
    Tang, L., Roemer, M., Bharadwaj, S., Belcastro, C.: An integrated health assessment and fault contingency management system for aircraft. In: AIAA Guidance, Navigation and Control Conference, AIAA 2008-6505 (August 2008)Google Scholar
  24. 24.
    Urnes, J.M., Reichenbach, E.Y., Smith, T.A.: Dynamic flight envelope assessment and prediction. In: AIAA Guidance Navigaton and Control Conference, AIAA 2008-6983 (August 2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Lombaerts
    • 1
    Email author
  • Stefan Schuet
    • 2
  • Diana Acosta
    • 2
  • John Kaneshige
    • 2
  1. 1.German Aerospace Center (DLR), Robotics and Mechatronics CenterInstitute of System Dynamics and Control, OberpfaffenhofenWeßlingGermany
  2. 2.Intelligent Systems DivisionNASA Ames Research CenterMoffett FieldUSA

Personalised recommendations