Advertisement

Nonlinear and Fault-Tolerant Flight Control Using Multivariate Splines

  • H. J. TolEmail author
  • C. C. de Visser
  • E. van Kampen
  • Qiping P. Chu

Abstract

This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear control allocation based on an onboard aerodynamic spline model and a real-time identification routine. The controller is tested for an aileron hardover failure and structural damages which change the global aerodynamic properties of the aircraft. It is shown that the controller can quickly tune itself in failure conditions without the need of failure detection and monitoring algorithms. Instead, self-tuning innovation based forgetting is applied to reconfigure the onboard aerodynamic model. The controller is able to tune itself each time a model error is detected and does not require any external triggers for re-identification. Multivariate splines have a high local approximation power and are able to accurately model nonlinear aerodynamics over the entire flight envelope of an aircraft. As a result the identification routine gives a robust adaption of the aerodynamic model in case of a failure.

Keywords

Failure Condition AIAA Journal Sideslip Angle Spline Model Aerodynamic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calise, A.J., Lee, S., Sharme, M.: Nonlinear adaptive flight control using neural networks. IEEE Control Systems 18, 14–25 (1998)CrossRefGoogle Scholar
  2. 2.
    Choi, J.Y., Chwa, D., Kim, M.: Adaptive control for feedback-linearized missiles with uncertainties. IEEE Transactions on Aerospace and Electronic Systems 36(2), 467–481 (2000)CrossRefGoogle Scholar
  3. 3.
    de Visser, C.C., Chu, Q.P., Mulder, J.A.: A new approach to linear regression with multivariate splines. Automatica 45(12), 2903–2909 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    de Visser, C.C., Chu, Q.P., Mulder, J.A.: A multidimensional spline based global nonlinear aerodynamic model for the cessna citation ii. In: AIAA Atmospheric Flight Mechanics Conference, number AIAA-2010-7950 (2010)Google Scholar
  5. 5.
    Visser, C.C.d., Chu, Q.P., Mulder, J.A.: Differential constraints for bounded recursive identification with multivariate splines. Automatica 47(9), 2059–2066 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    de Visser, C.C., Chu, Q.P., Mulder, J.A.: Validating the multidimensional spline based global aerodynamic model for the cessna citation II. In: AIAA Atmospheric Flight Mechanics Conference, number AIAA-2011-6356 (2011)Google Scholar
  7. 7.
    Fortescue, T.R., Kershenbaum, L.S., Ydstie, B.E.: Implementation of self-tuning regulators with variable forgetting factors. Automatica 17(6), 831–835 (1981)CrossRefGoogle Scholar
  8. 8.
    Kim, B.S., Calise, A.J.: Nonlinear flight control using neural networks. AIAA Journal of Guidance, Control and Dynamics 20(1), 26–33 (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press (2007)Google Scholar
  10. 10.
    Lane, S.H., Stengel, R.F.: Flight control design using non-linear inverse dynamics. Automatica 24(4), 471–483 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Lombaerts, T.J.J., Chu, Q.P., Mulder, J.A., Joosten, D.A.: Modular flight control reconfiguration design and simulation. Control Engineering Practice 19(6), 540–554 (2011)CrossRefGoogle Scholar
  12. 12.
    Lombaerts, T.J.J., Huisman, H.O., Chu, Q.P., Mulder, J.A., Joosten, D.A.: Nonlinear reconfiguring flight control based on online physical model identification. AIAA Journal of Guidance, Control, and Dynamics 32, 727–748 (2009)CrossRefGoogle Scholar
  13. 13.
    Lombaerts, T.J.J., Smali, M.H., Stroosma, O., Chu, Q.P., Mulder, J.A., Joosten, D.A.: Piloted simulator evaluation results of new fault-tolerant flight control algorithm. AIAA Journal of Guidance, Navigation, and Control 32(6), 1747–1765 (2009)CrossRefGoogle Scholar
  14. 14.
    Lombaerts, T.J.J., Van Oort, E.R., Chu, Q.P., Mulder, J.A., Joosten, D.A.: Online aerodynamic model structure selection and parameter estimation for fault-tolerant control. AIAA Journal of Guidance, Control, and Dynamics 33(3), 707–723 (2010)CrossRefGoogle Scholar
  15. 15.
    Nguyen, L.T., Ogburn, M.E., Gilbert, W.P., Kibler, K.S., Brown, P.W., Deal, P.L.: Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability. Technical Report 1538, NASA (1979)Google Scholar
  16. 16.
    Reiner, J., Balas, G.J., Garrard, W.L.: Flight control design using robust dynamic inversion and time-scale separation. Automatica 32(11), 1493–1504 (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Sieberling, S.: Robust flight control using incremental nonlinear dynamic inverstion and angular acceleration prediction. AIAA Journal of Guidance, Control, and Dynamics 33, 1732–1742 (2010)CrossRefGoogle Scholar
  18. 18.
    Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation, 2nd edn. John Wiley & Sons, Hoboken (2003)Google Scholar
  19. 19.
    Tol, H.J., de Visser, C.C., van Kampen, E., Chu, Q.P.: Nonlinear multivariate spline-based control allocation for high-performance aircraft. AIAA Journal of Guidance, Control, and Dynamics 36(6), 1840–1862 (2014)CrossRefGoogle Scholar
  20. 20.
    Walker, G.P., Allen, D.A.: X-35b stovl flight control law design and flying qualities. In: Biennial International Powered Lift Conference and Exhibit (2002)Google Scholar
  21. 21.
    Wang, Q., Stengel, R.F.: Robust nonlinear flight control of a high-performance aircraft. IEEE Transactions on Systems Technology 13(1), 15–26 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • H. J. Tol
    • 1
    Email author
  • C. C. de Visser
    • 1
  • E. van Kampen
    • 1
  • Qiping P. Chu
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations