Skip to main content

Abstract

Surface modification approaches can be mainly regarded as by either a physical or a chemical means (note the biological ones are considered as a subset of chemical ones), or both. This chapter focuses on the physical means, particularly, a morphological approach to surface modification. Through illustration of how the area of a planar surface can be increased significantly by adding nanoscopic structures to the surface and that most of these nanostructures may be deemed useless for biosensor applications, it argues for a particular need of biosensors, namely, the need for aqua-robust nanostructures having the highest exposed surface area possible. Following that, it presents with full technical detail the processes to form aqua-robust nanopillar structures along with brief discussions on the underlying science. All the discussions are in the form of case studies, thus providing a practical guide for readers who might want to develop similar surfaces. This chapter ends with, again, a detailed discussion of a recently patented procedure on how to form integrated micro and nano structures on-a-chip for possible biosensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, X., Zhang, S., Chen, H., Kong, J.: Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments. Talanta 80(1), 8–18 (1009)

    Google Scholar 

  2. Pumera, M., Escarpa, A.: Nanomaterials as electrochemical detectors in microfluidics and CE: fundamentals, designs, and applications. Electrophoresis 30(19), 3315–3323 (2009)

    Article  Google Scholar 

  3. Dunn, B., Long, J.W., Rolison, D.R.: Rethinking multifunction in three dimensions for miniaturizing electrical energy storage. Electrochem. Soc. Interface 17, 49 (2008)

    Google Scholar 

  4. Zhang, G.: Design and fabrication of 3D skyscraper nanostructures and their applciations in biosensors, in new perspectives in biosensors technology and applications. In-Tech. pp. 269–290 (2011)

    Google Scholar 

  5. Lau, K.K.S., Bico, J., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I.: Superhydrophobic carbon nanotube forests. Nano Lett. 3(12), 1701–1705 (2003)

    Article  Google Scholar 

  6. Fan, J., Dyer, D., Zhang, G., Zhao, Y.: Nanocarpet effect: pattern formation during the wetting of vertically aligned nanorod arrays. Nano Lett. 4(11), 2133–2138 (2004)

    Article  Google Scholar 

  7. Xu, J., Huang, X., Xie, G.: Study on the structures and magnetic properties of Ni, Co-Al2O3 electrodeposited nanowire arrays. Mater. Res. Bull. 39, 811–818 (2004)

    Article  Google Scholar 

  8. Kralchevsky, P.A., Nagayama, K.: Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interf. Sci. 85, 145–192 (2000)

    Article  Google Scholar 

  9. Anandan, V., Yang, X., Kim, E., Rao, Y., Zhang, G.: Role of reaction kinetics and mass transport in glucose sensing with nanopillar array electrodes. J. Biol. Eng. 1(1), 5 (2007)

    Article  Google Scholar 

  10. Rao, Y., Anandan, V., Zhang, G.: FFT analysis of pore pattern in anodized alumina formed at various conditions. J. Nanosci. Nanotechnol. 5(12), 2070–2075 (2005)

    Article  Google Scholar 

  11. Anandan, V., Rao, Y., Zhang, G.: Nanopillar array structures for high performance electrochemical sensing. Int. J. Nanomed. 1, 73–79 (2006)

    Article  Google Scholar 

  12. Tanaka, Y., Sato, K., Shimizu, T., Yamato, M., Okano, T., Kitamori, T.: Biological cells on microchips: new technologies and applications. Biosens. Bioelectron. 23(4), 449–458 (2007)

    Article  Google Scholar 

  13. Zhang, G.: United State Patent US 8,453,319 B2

    Google Scholar 

  14. Zhang, G.: United State Patent US 8,865,402 B2

    Google Scholar 

  15. Zhao, G., Xu, C., Li, H.: Highly ordered cobalt-manganese oxide (CMO) nanowire array thin film on Ti/Si substrate as an electrode for electrochemical capacitor. J. Power Sources 163(2), 1132–1136 (2007)

    Article  Google Scholar 

  16. Balakrishman, S., Kripesh, V., Chong, S.: Fabrication of self-organized metal nanowire array using porous alumina template for off-chip interconnects. Int. J. Nanosci. 4(4), 453–458 (2006)

    Article  Google Scholar 

  17. Rabin, O., Herz, P.R., Lin, Y., Akinwande, A.I., Cronin, S.B., Dresselhaus, M.S.: Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Adv. Funct. Mater. 13(8), 631–638 (2003)

    Article  Google Scholar 

  18. Chu, S.Z., Wada, K., Inoue, S., Todoroki, S.: Fabrication and characteristics of nanostructures on glass by Al anodization and electrodeposition. Electrochim. Acta 48(20–22), 3147–3153 (2003)

    Article  Google Scholar 

  19. Sharma, G., Chong, S.C., Ebin, L., Hui, C., Gan, C.L., Kripesh, V.: Fabrication of patterned and non-patterned metallic nanowire arrays on silicon substrate. Thin Solid Films 515(7–8), 3315–3322 (2007)

    Article  Google Scholar 

  20. Hoogvliet, J.C., van Bennekom, W.P.: Gold thin-film electrodes: an EQCM study of the influence of chromium and titanium adhesion layers on the response. Electrochim. Acta 47(4), 599–611 (2001)

    Article  Google Scholar 

  21. Gangadharan, R., Anandan, V., Zhang, A., Drwiega, J.C., Zhang, G.: Enhancing the performance of a fluidic glucose biosensor with 3D electrodes. Sensors Actuators B 160(1), 991–998 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, G. (2015). Morphological Surface Modification. In: Nanoscale Surface Modification for Enhanced Biosensing. Springer, Cham. https://doi.org/10.1007/978-3-319-17479-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17479-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17478-5

  • Online ISBN: 978-3-319-17479-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics