Advertisement

Round-Optimal Perfectly Secret Message Transmission with Linear Communication Complexity

  • Ravi KishoreEmail author
  • Ashutosh Kumar
  • Chiranjeevi Vanarasa
  • Srinathan Kannan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9063)

Abstract

Consider an arbitrary network of n nodes, up to any t of which are eavesdropped on by an adversary. A sender S wishes to send a message m to a receiver R such that the adversary learns nothing about m (unless it eavesdrops on one among {S,R}). We prove a necessary and sufficient condition on the (synchronous) network for the existence of r-round protocols for perfect communication, for any given r > 0. Our results/protocols are easily adapted to asynchronous networks too and are shown to be optimal in asynchronous “rounds”. Further, we show that round-optimality is achieved without trading-off the communication complexity; specifically, our protocols have an overall message complexity of O(n) elements of a finite field to perfectly transmit one field element. Interestingly, optimality (of protocols) also implies: (a) when the shortest path between S and R has Ω(n) nodes, perfect secrecy is achieved for “free”, because any (insecure routing) protocol would also take O(n) rounds and send O(n) messages (one message along each edge in the shortest path) for transmission and (b) it is well-known that (t + 1) vertex disjoint paths from S to R are necessary for a protocol to exist; a consequent folklore is that the length of the (t + 1) th ranked (disjoint shortest) path would dictate the round complexity of protocols; we show that the folklore is false; round-optimal protocols can be substantially faster than the aforementioned length.

Keywords

Undirected Graph Polynomial Time Algorithm Communication Complexity Message Transmission Faulty Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Franklin, M.K., Yung, M.: Secure hypergraphs: privacy from partial broadcast (extended abstract). In: Leighton, F.T., Borodin, A. (eds.) STOC, pp. 36–44. ACM (1995)Google Scholar
  2. 2.
    Hirt, M., Maurer, U.: Complete Characterization of Adversaries Tolerable in Secure Multi-party Computation. In: Proceedings of the 16th Symposium on Principles of Distributed Computing (PODC), pp. 25–34. ACM Press (August 1997)Google Scholar
  3. 3.
    Ostrovsky, R., Yung, M.: How to Withstand Mobile Virus Attacks. In: Proceedings of the 10th Symposium on Principles of Distributed Computing (PODC), pp. 51–61. ACM Press (1991)Google Scholar
  4. 4.
    Srinathan, K., Raghavendra, P., Chandrasekaran, P.R.: On proactive perfectly secure message transmission. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 461–473. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Fitzi, M., Hirt, M., Maurer, U.M.: Trading Correctness for Privacy in Unconditional multi-party Computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 121–136. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Choudhary, A., Patra, A., Ashwinkumar, B.V., Srinathan, K., Rangan, C.P.: Perfectly reliable and secure communication tolerating static and mobile mixed adversary. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 137–155. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Sayeed, H., Abu-Amara, H.: Perfectly Secure Message Transmission in Asynchronous Networks. In: Seventh IEEE Symposium on Parallel and Distributed Processing (1995)Google Scholar
  8. 8.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly Secure Message Transmission. Journal of the Association for Computing Machinery (JACM) 40(1), 17–47 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Nayak, M., Agrawal, S., Srinathan, K.: Minimal connectivity for unconditionally secure message transmission in synchronous directed networks. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 32–51. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Menger, K.: Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10, 96–115 (1927)zbMATHGoogle Scholar
  11. 11.
    Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmission scheme. IEEE Trans. Inf. Theor. 55(11), 5223–5232 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Badanidiyuru, A., Patra, A., Choudhury, A., Srinathan, K., Rangan, C.P.: On the trade-off between network connectivity, round complexity, and communication complexity of reliable message transmission. J. ACM 59(5), 22 (2012)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fitzi, M., Franklin, M.K., Garay, J.A., Vardhan, S.H.: Towards optimal and efficient perfectly secure message transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 311–322. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Renault, J., Renou, L., Tomala, T.: Secure message transmission on directed networks. Games and Economic Behavior 85, 1–18 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Pandu Rangan, C.: On perfectly secure communication over arbitrary networks. In: Proceedings of the 21st Symposium on Principles of Distributed Computing (PODC), Monterey, California, USA, pp. 193–202. ACM Press (July 2002)Google Scholar
  16. 16.
    Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on Information Theory IT-22, 644–654 (1976)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Desmedt, Y.G., Wang, Y.: Perfectly Secure Message Transmission Revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Srinathan, K., Rangan, C.P.: Possibility and complexity of probabilistic reliable communications in directed networks. In: Proceedings of 25th ACM Symposium on Principles of Distributed Computing, PODC 2006 (2006)Google Scholar
  19. 19.
    Franklin, M.K., Yung, M.: Communication complexity of secure computation (extended abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) Proceedings of the 24th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 4-6, pp. 699–710. ACM (1992)Google Scholar
  20. 20.
    Shamir, A.: How to Share a Secret. Communications of the ACM 22, 612–613 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)Google Scholar
  22. 22.
    Endre Tarjan, R.: Testing graph connectivity. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC 1974, pp. 185–193. ACM, New York (1974)CrossRefGoogle Scholar
  23. 23.
    Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. Journal of the ACM 35, 921–940 (1988)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ravi Kishore
    • 1
    Email author
  • Ashutosh Kumar
    • 1
  • Chiranjeevi Vanarasa
    • 1
  • Srinathan Kannan
    • 1
  1. 1.International Institute of Information TechnologyHyderabadIndia

Personalised recommendations