Skip to main content

Anisotropic Gravitational Wave Background from Massless Preheating

  • Chapter
  • First Online:
Exploring the Early Universe with Gravitational Waves

Part of the book series: Springer Theses ((Springer Theses))

  • 882 Accesses

Abstract

Reheating is one of the least understood periods in the early universe. While nearly all the elementary particles we observe must have been produced during this period, we still do not know for sure how the process occurred. Although reheating might have an effect on the curvature perturbation [1], the main constraint to date comes from the abundance of light elements which give bounds on the reheating temperature after thermalisation [2]. However, as was shown in Sect. 1.4, the detailed preheating dynamics strongly depend on the underlying model of inflation. Therefore, studying observables that were affected by the reheating process would give us insight into this period as well as inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Bond, A.V. Frolov, Z. Huang, L. Kofman, Non-gaussian spikes from chaotic billiards in inflation preheating. Phys. Rev. Lett. 103, 071301 (2009). http://xxx.lanl.gov/abs/0903.3407

  2. S. Hannestad, What is the lowest possible reheating temperature? Phys. Rev. D70, 043506 (2004). http://xxx.lanl.gov/abs/astro-ph/0403291

  3. M. Maggiore, Gravitational wave experiments and early universe cosmology. Phys. Rept. 331, 283–367 (2000). http://xxx.lanl.gov/abs/gr-qc/9909001

  4. R. Easther, E.A. Lim, Stochastic gravitational wave production after inflation. JCAP 0604, 010 (2006). http://xxx.lanl.gov/abs/astro-ph/0601617

  5. L. Bethke, D.G. Figueroa, A. Rajantie, Anisotropies in the gravitational wave background from preheating. Phys. Rev. Lett. 111(1), 011301 (2013). http://xxx.lanl.gov/abs/1304.2657

  6. L. Bethke, D.G. Figueroa, A. Rajantie, On the anisotropy of the gravitational wave background from massless preheating. JCAP 1406, 047 (2014). http://xxx.lanl.gov/abs/1309.1148

  7. G.N. Felder, I. Tkachev, LATTICEEASY: A program for lattice simulations of scalar fields in an expanding universe. Comput. Phys. Commun. 178, 929–932 (2008). http://xxx.lanl.gov/abs/hep-ph/0011159

  8. L. Kofman, A.D. Linde, A.A. Starobinsky, Towards the theory of reheating after inflation. Phys. Rev. D56, 3258–3295 (1997). http://xxx.lanl.gov/abs/hep-ph/9704452

  9. P.B. Greene, L. Kofman, A.D. Linde, A.A. Starobinsky, Structure of resonance in preheating after inflation. Phys. Rev. D56, 6175–6192 (1997). http://xxx.lanl.gov/abs/hep-ph/9705347

  10. S.Y. Khlebnikov, I. Tkachev, Classical decay of inflaton. Phys. Rev. Lett. 77, 219–222 (1996). http://xxx.lanl.gov/abs/hep-ph/9603378

  11. T. Prokopec, T.G. Roos, Lattice study of classical inflaton decay. Phys. Rev. D55, 3768–3775 (1997). http://xxx.lanl.gov/abs/hep-ph/9610400

  12. J. Garcia-Bellido, D.G. Figueroa, A.Sastre, A gravitational wave background from reheating after hybrid inflation. Phys. Rev. D77, 043517 (2008). http://xxx.lanl.gov/abs/0707.0839

  13. S. Khlebnikov, I. Tkachev, Relic gravitational waves produced after preheating. Phys. Rev. D56, 653–660 (1997). http://xxx.lanl.gov/abs/hep-ph/9701423

  14. J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman, J.-P. Uzan, Theory and numerics of gravitational waves from preheating after inflation. Phys. Rev. D76, 123517 (2007). http://xxx.lanl.gov/abs/0707.0875

  15. K. Enqvist, D.G. Figueroa, T. Meriniemi, Stochastic background of gravitational waves from fermions. Phys. Rev. D86, 061301 (2012). http://xxx.lanl.gov/abs/1203.4943

  16. D.G. Figueroa, T. Meriniemi, “Stochastic background of gravitational waves from fermions—theory and applications. JHEP 10, 101 (2013). http://xxx.lanl.gov/abs/1306.6911

  17. A. Cruise, R. Ingley, A prototype gravitational wave detector for 100-MHz. Class. Quant. Grav. 23, 6185–6193 (2006)

    Article  ADS  MATH  Google Scholar 

  18. A. Cruise, The potential for very high-frequency gravitational wave detection. Class. Quant. Grav. 29, 095003 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Akutsu, S. Kawamura, A. Nishizawa, K. Arai, K. Yamamoto, et al., Search for a stochastic background of 100-MHz gravitational waves with laser interferometers. Phys. Rev. Lett. 101, 101101 (2008). http://xxx.lanl.gov/abs/0803.4094

  20. Planck Collaboration Collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation. http://xxx.lanl.gov/abs/1303.5082

  21. S. Tsujikawa, J. Ohashi, S. Kuroyanagi, A. De Felice, Planck constraints on single-field inflation. Phys. Rev. D88(2), 023529 (2013) http://xxx.lanl.gov/abs/1305.3044

  22. BICEP2 Collaboration Collaboration, P.A.R. Ade et al. BICEP2 I: Detection Of B-mode Polarization at Degree Angular Scales. http://xxx.lanl.gov/abs/1403.3985

  23. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)

    Google Scholar 

  24. D.G. Figueroa, Phenomenological and Theoretical Aspects of Reheating. Ph.D. thesis

    Google Scholar 

  25. A.R. Liddle, D.H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  26. D. Wands, K.A. Malik, D.H. Lyth, A.R. Liddle, A new approach to the evolution of cosmological perturbations on large scales. Phys. Rev. D62, 043527 (2000). http://xxx.lanl.gov/abs/astro-ph/0003278

  27. T. Tanaka, B. Bassett, Application of the separate universe approach to preheating. http://xxx.lanl.gov/abs/astro-ph/0302544

  28. T. Suyama, S. Yokoyama, Generating the primordial curvature perturbations in preheating. Class. Quant. Grav. 24, 1615–1626 (2007). http://xxx.lanl.gov/abs/astro-ph/0606228

  29. A. Chambers, A. Rajantie, Lattice calculation of non-Gaussianity from preheating. Phys. Rev. Lett. 100, 041302 (2008). http://xxx.lanl.gov/abs/0710.4133

  30. A. Chambers, A. Rajantie, Non-Gaussianity from massless preheating. JCAP 0808, 002 (2008). http://xxx.lanl.gov/abs/0805.4795

  31. D.G. Figueroa, J. Garcia-Bellido, A. Rajantie, On the transverse-traceless projection in lattice simulations of gravitational wave production. JCAP 1111, 015 (2011). http://xxx.lanl.gov/abs/1110.0337

  32. WMAP Collaboration Collaboration, D. Spergel et al. First year Wilkinson Microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003). http://xxx.lanl.gov/abs/astro-ph/0302209

  33. T. Suyama, S. Yokoyama, Statistics of general functions of a Gaussian field-application to non-Gaussianity from preheating. JCAP 1306, 018 (2013). http://xxx.lanl.gov/abs/1303.1254

  34. G.S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications (Springer, New York, 1995)

    Google Scholar 

  35. J. Bond, G. Efstathiou, Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter. Astrophys. J. 285, L45–L48 (1984)

    Article  ADS  Google Scholar 

  36. B. Efron, R. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall/CRC, FL, 1993)

    Book  MATH  Google Scholar 

  37. K. Rummukainen, Monte carlo simulation methods (University of Oulu, Oulu, 2008). http://www.helsinki.fi/~ummukai/lectures/montecarlo_oulu

  38. ATLAS Collaboration Collaboration, G. Aad et al. Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1–29 (2012). http://xxx.lanl.gov/abs/1207.7214

  39. J. Ellis, J. Espinosa, G. Giudice, A. Hoecker, A. Riotto, The probable fate of the standard model, Phys. Lett. B679, 369–375 (2009). http://xxx.lanl.gov/abs/0906.0954

  40. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto, et al. Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. B709, 222–228 (2012). http://xxx.lanl.gov/abs/1112.3022

  41. D.G. Figueroa, Imprints of the standard model in the sky: gravitational waves from the decay of the Higgs after inflation. http://xxx.lanl.gov/abs/1402.1345

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bianca Bethke .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bethke, L.B. (2015). Anisotropic Gravitational Wave Background from Massless Preheating. In: Exploring the Early Universe with Gravitational Waves. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-17449-5_3

Download citation

Publish with us

Policies and ethics