Skip to main content

Matrix Metalloproteinase 9 (MMP-9)

The Middle-Man of Post-myocardial Infarction Extracellular Matrix Remodeling

  • Chapter
  • First Online:
Book cover Cardiac Fibrosis and Heart Failure: Cause or Effect?

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 13))

Abstract

The substantial involvement of matrix metalloproteinase-9 (MMP-9) in adverse cardiac extracellular matrix (ECM) remodeling makes it one of the most widely investigated MMPs. MMP-9 functions primarily by directly degrading and activating ECM structural and non-structural molecules to regulate cardiac tissue remodeling. This activity is opposed under physiological conditions by a set of endogenous inhibitors known as tissue inhibitors of metalloproteinases (TIMPS). Following myocardial infarction (MI), this constraint is diminished and MMP-9 tissue and plasma levels acutely increase concomitant with a decline in cardiac function. MMP-9 loss-of-function experiments in multiple animal models of MI demonstrate an overall beneficial effect and emphasize the importance of MMP-9 inhibition as a therapeutic intervention. This chapter summarizes MMP-9 structure, transcriptional regulation, post-translational modification, and downstream ECM substrates. We also explore the overall important role of MMP-9 in adverse cardiac remodeling post-MI and its potential utility as a pathophysiological biomarker. Finally, we highlight MMP-9 endogenous and pharmacological inhibitors and the challenges that must be overcome to achieve clinical translation. This is a comprehensive review of MMP-9, from its biochemical structure to its potential role in clinical trials, and can serve as an introduction to young researchers who just joined this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lockhart M1, Wirrig E, Phelps A, Wessels A (2011) Extracellular matrix and heart development. Birth Defects Res A Clin Mol Teratol 91:535–550

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Ma Y, Halade GV, Lindsey ML (2012) Extracellular matrix and fibroblast communication following myocardial infarction. J Cardiovasc Transl Res 5:848–857

    PubMed Central  PubMed  Google Scholar 

  3. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687

    CAS  PubMed  Google Scholar 

  5. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3:1–30

    CAS  PubMed  Google Scholar 

  6. Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200:423–428

    CAS  PubMed  Google Scholar 

  7. Schellings MW, Pinto YM, Heymans S (2004) Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res 64:24–31

    CAS  PubMed  Google Scholar 

  8. Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML (2013) Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology (Bethesda) 28:391–403

    CAS  Google Scholar 

  11. Minond D, Lauer-Fields JL, Cudic M, Overall CM, Pei D, Brew K, Visse R, Nagase H, Fields GB (2006) The roles of substrate thermal stability and P2 and P1’ subsite identity on matrix metalloproteinase triple-helical peptidase activity and collagen specificity. J Biol Chem 281(50):38302–38313

    Google Scholar 

  12. Yan C, Boyd DD (2007) Regulation of matrix metalloproteinase gene expression. J Cell Physiol 211:19–26

    CAS  PubMed  Google Scholar 

  13. Sato H, Seiki M (1993) Regulatory mechanism of 92 kda type iv collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8:395–405

    CAS  PubMed  Google Scholar 

  14. Peters DG, Kassam A, St Jean PL, Yonas H, Ferrell RE (1999) Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm. Stroke 30:2612–2616

    CAS  PubMed  Google Scholar 

  15. Koh YS, Chang K, Kim PJ, Seung KB, Baek SH, Shin WS, Lim SH, Kim JH, Choi KB (2008) A close relationship between functional polymorphism in the promoter region of matrix metalloproteinase-9 and acute myocardial infarction. Int J Cardiol 127:430–432

    PubMed  Google Scholar 

  16. Vandooren J, Van den Steen PE, Opdenakker G (2013) Biochemistry and molecular biology of gelatinase b or matrix metalloproteinase-9 (mmp-9): the next decade. Crit Rev Biochem Mol Biol 48:222–272

    CAS  PubMed  Google Scholar 

  17. Chicoine E, Esteve PO, Robledo O, Van Themsche C, Potworowski EF, St-Pierre Y (2002) Evidence for the role of promoter methylation in the regulation of mmp-9 gene expression. Biochem Biophys Res Commun 297:765–772

    CAS  PubMed  Google Scholar 

  18. Yan C, Wang H, Toh Y, Boyd DD (2003) Repression of 92-kda type iv collagenase expression by mta1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation. J Biol Chem 278:2309–2316

    CAS  PubMed  Google Scholar 

  19. Yang CM, Lee IT, Hsu RC, Chi PL, Hsiao LD (2013) Nadph oxidase/ros-dependent pyk2 activation is involved in tnf-alpha-induced matrix metalloproteinase-9 expression in rat heart-derived h9c2 cells. Toxicol Appl Pharmacol 272:431–442

    CAS  PubMed  Google Scholar 

  20. Rouet-Benzineb P, Gontero B, Dreyfus P, Lafuma C (2000) Angiotensin ii induces nuclear factor-kappa b activation in cultured neonatal rat cardiomyocytes through protein kinase c signaling pathway. J Mol Cell Cardiol 32:1767–1778

    CAS  PubMed  Google Scholar 

  21. Rangaswami H, Bulbule A, Kundu GC (2004) Nuclear factor-inducing kinase plays a crucial role in osteopontin-induced mapk/ikappabalpha kinase-dependent nuclear factor kappab-mediated promatrix metalloproteinase-9 activation. J Biol Chem 279:38921–38935

    CAS  PubMed  Google Scholar 

  22. Clark IM, Swingler TE, Sampieri CL, Edwards DR (2008) The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40:1362–1378

    CAS  PubMed  Google Scholar 

  23. He C (1996) Molecular mechanism of transcriptional activation of human gelatinase b by proximal promoter. Cancer Lett 106:185–191

    CAS  PubMed  Google Scholar 

  24. Yokoo T, Kitamura M (1996) Dual regulation of il-1 beta-mediated matrix metalloproteinase-9 expression in mesangial cells by nf-kappa b and ap-1. Am J Physiol 270:F123–130

    CAS  PubMed  Google Scholar 

  25. Chandrasekar B, Mummidi S, Mahimainathan L, Patel DN, Bailey SR, Imam SZ, Greene WC, Valente AJ (2006) Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on nf-kappab- and ap-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin. J Biol Chem 281:15099–15109

    CAS  PubMed  Google Scholar 

  26. Lin HY, Chiang CH, Hung WC (2013) Stat3 upregulates mir-92a to inhibit reck expression and to promote invasiveness of lung cancer cells. Br J Cancer 109:731–738

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Limana F, Esposito G, D’Arcangelo D, Di Carlo A, Romani S, Melillo G, Mangoni A, Bertolami C, Pompilio G, Germani A, Capogrossi MC (2011) Hmgb1 attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and mir-206-mediated inhibition of timp-3. PLoS ONE 6:e19845

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Papazafiropoulou A, Tentolouris N (2009) Matrix metalloproteinases and cardiovascular diseases. Hippokratia 13:76–82

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Borkakoti N (2000) Structural studies of matrix metalloproteinases. J Mol Med (Berl) 78:261–268

    CAS  Google Scholar 

  30. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    CAS  PubMed  Google Scholar 

  31. Rowsell S, Hawtin P, Minshull CA, Jepson H, Brockbank SM, Barratt DG, Slater AM, McPheat WL, Waterson D, Henney AM, Pauptit RA (2002) Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol 319:173–181

    CAS  PubMed  Google Scholar 

  32. Bannikov GA, Karelina TV, Collier IE, Marmer BL, Goldberg GI (2002) Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide. J Biol Chem 277:16022–16027

    CAS  PubMed  Google Scholar 

  33. Allan JA, Docherty AJ, Barker PJ, Huskisson NS, Reynolds JJ, Murphy G (1995) Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem J 309:299–306

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Steffensen B, Wallon UM, Overall CM (1995) Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J Biol Chem 270:11555–11566

    CAS  PubMed  Google Scholar 

  35. De Souza SJ, Pereira HM, Jacchieri S, Brentani RR (1996) Collagen/collagenase interaction: does the enzyme mimic the conformation of its own substrate? FASEB J 10:927–930

    CAS  PubMed  Google Scholar 

  36. Gomis-Rüth FX, Gohlke U, Betz M, Knäuper V, Murphy G, López-Otín C, Bode W (1996) The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain. J Mol Biol 264:556–566

    PubMed  Google Scholar 

  37. Vandooren J, Geurts N, Martens E, Van den Steen PE, Jonghe SD, Herdewijn P, Opdenakker G (2011) Gelatin degradation assay reveals MMP-9 inhibitors and function of O-glycosylated domain. World J Biol Chem 2:14–24

    PubMed Central  PubMed  Google Scholar 

  38. Rosenblum G, Van den Steen PE, Cohen SR, Grossmann JG, Frenkel J, Sertchook R, Slack N, Strange RW, Opdenakker G, Sagi I (2007) Insights into the structure and domain flexibility of full-length pro-matrix metalloproteinase-9/gelatinase B. Structure 15:1227–1236

    CAS  PubMed  Google Scholar 

  39. Rosenblum G, Van den Steen PE, Cohen SR, Bitler A, Brand DD, Opdenakker G, Sagi I (2010) Direct visualization of protease action on collagen triple helical structure. PLoS ONE 5:e11043

    PubMed Central  PubMed  Google Scholar 

  40. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    CAS  PubMed  Google Scholar 

  41. Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 264:17213–17221

    CAS  PubMed  Google Scholar 

  42. Hibbs MS, Hasty KA, Seyer JM, Kang AH, Mainardi CL (1985) Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J Biol Chem 260:2493–2500

    CAS  PubMed  Google Scholar 

  43. Khan MM, Simizu S, Suzuki T, Masuda A, Kawatani M, Muroi M, Dohmae N, Osada H (2012) Protein disulfide isomerase-mediated disulfide bonds regulate the gelatinolytic activity and secretion of matrix metalloproteinase-9. Exp Cell Res 318:904–914

    CAS  PubMed  Google Scholar 

  44. Cha H, Kopetzki E, Huber R, Lanzendörfer M, Brandstetter H (2002) Structural basis of the adaptive molecular recognition by MMP9. J Mol Biol 320:1065–1079

    CAS  PubMed  Google Scholar 

  45. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    CAS  PubMed  Google Scholar 

  46. Van den Steen PE, Van Aelst I, Hvidberg V, Piccard H, Fiten P, Jacobsen C, Moestrup SK, Fry S, Royle L, Wormald MR, Wallis R, Rudd PM, Dwek RA, Opdenakker G (2006) The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J Biol Chem 281:18626–18637

    PubMed  Google Scholar 

  47. Kotra LP, Zhang L, Fridman R, Orlando R, Mobashery S (2002) N-Glycosylation pattern of the zymogenic form of human matrix metalloproteinase-9. Bioorg Chem 30:356–370

    CAS  PubMed  Google Scholar 

  48. Van den Steen PE, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33:151–208

    PubMed  Google Scholar 

  49. Kiczak L, Tomaszek A, Bania J, Paslawska U, Zacharski M, Noszczyk-Nowak A, Janiszewski A, Skrzypczak P, Ardehali H, Jankowska EA, Ponikowski P (2013) Expression and complex formation of MMP9, MMP2, NGAL, and TIMP1 in porcine myocardium but not in skeletal muscles in male pigs with tachycardia-induced systolic heart failure. Biomed Res Int 2013:283856

    PubMed Central  PubMed  Google Scholar 

  50. Triebel S, Bläser J, Reinke H, Tschesche H (1992) A 25 kDa alpha 2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett 314:386–388

    CAS  PubMed  Google Scholar 

  51. Winberg JO, Kolset SO, Berg E, Uhlin-Hansen L (2000) Macrophages secrete matrix metalloproteinase 9 covalently linked to the core protein of chondroitin sulphate proteoglycans. J Mol Biol 304:669–680

    CAS  PubMed  Google Scholar 

  52. Malla N, Berg E, Theocharis AD, Svineng G, Uhlin-Hansen L, Winberg JO (2013) In vitro reconstitution of complexes between pro-matrix metalloproteinase-9 and the proteoglycans serglycin and versican. FEBS J 280:2870–2887

    CAS  PubMed  Google Scholar 

  53. Malla N, Sjøli S, Winberg JO, Hadler-Olsen E, Uhlin-Hansen L (2008) Biological and pathobiological functions of gelatinase dimers and complexes. Connect Tissue Res 49:180–184

    CAS  PubMed  Google Scholar 

  54. Malla N, Berg E, Uhlin-Hansen L, Winberg JO (2008) Interaction of pro-matrix metalloproteinase-9/proteoglycan heteromer with gelatin and collagen. J Biol Chem 283:13652–13665

    CAS  PubMed  Google Scholar 

  55. Okada Y, Gonoji Y, Naka K, Tomita K, Nakanishi I, Iwata K, Yamashita K, Hayakawa T (1992) Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem 267:21712–21719

    CAS  PubMed  Google Scholar 

  56. Bellini T, Trentini A, Manfrinato MC, Tamborino C, Volta CA, Di Foggia V, Fainardi E, Dallocchio F, Castellazzi M (2012) Matrix metalloproteinase-9 activity detected in body fluids is the result of two different enzyme forms. J Biochem 151:493–499

    CAS  PubMed  Google Scholar 

  57. Geurts N, Becker-Pauly C, Martens E, Proost P, Van den Steen PE, Stöcker W, Opdenakker G (2012) Meprins process matrix metalloproteinase-9 (MMP-9)/gelatinase B andenhance the activation kinetics by MMP-3. FEBS Lett 586:4264–4269

    CAS  PubMed  Google Scholar 

  58. Ramani VC, Kaushal GP, Haun RS (2011) Proteolytic action of kallikrein-related peptidase 7 produces unique active matrix metalloproteinase-9 lacking the C-terminal hemopexin domains. Biochim Biophys Acta 1813:1525–1531

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    CAS  PubMed  Google Scholar 

  60. Halade GV, Jin YF, Lindsey ML (2013) Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther 139:32–40

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81:474–481

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Etoh T, Joffs C, Deschamps AM, Davis J, Dowdy K, Hendrick J, Baicu S, Mukherjee R, Manhaini M, Spinale FG (2001) Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. Am J Physiol Heart Circ Physiol 281:H987–94

    CAS  PubMed  Google Scholar 

  63. Romanic AM, Burns-Kurtis CL, Gout B, Berrebi-Bertrand I, Ohlstein EH (2001) Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci 68:799–814

    CAS  PubMed  Google Scholar 

  64. Mukherjee R, Colbath GP, Justus CD, Bruce JA, Allen CM, Hewett KW, Saul JP, Gourdie RG, Spinale FG (2010) Spatiotemporal induction of matrix metalloproteinase-9 transcription after discrete myocardial injury. FASEB J 24:3819–3828

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5:1317–1327

    CAS  PubMed  Google Scholar 

  66. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521

    CAS  PubMed  Google Scholar 

  67. Van den Steen PE, Wuyts A, Husson SJ, Proost P, Van Damme J, Opdenakker G (2003) Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. Eur J Biochem 270:3739–3749

    Google Scholar 

  68. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon* JL, Leber TM, Mangan M, Miller K, Nayee P, Owen K, Patel S, Thomas W, Wells G, Wood andLM, Woolley K (1994) Processing of tumour necrosis factor-α precursor by metalloproteinases. Nature 370:555–557

    CAS  PubMed  Google Scholar 

  69. Schönbeck U, Mach F, Libby P (1998) Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J Immunol 161:3340–3346

    PubMed  Google Scholar 

  70. Benbow U, Brinckerhoff CE (1997) The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol 15:519–526

    CAS  PubMed  Google Scholar 

  71. Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31–41

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Wasylyk C, Gutman A, Nicholson R, Wasylyk B (1991) The c-Ets oncoprotein activates the stromelysin promoter through the same elements as several non-nuclear oncoproteins. EMBO J 10:1127–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Wu CY, Hsieh HL, Sun CC, Yang CM (2009) IL-1β induces MMP-9 expression via a Ca2+ -dependent CaMKII/JNK/c-JUN cascade in rat brain astrocytes. Glia 57:1775–1789

    PubMed  Google Scholar 

  74. Ray A, Bal BS, Ray BK (2005) Transcriptional induction of matrix metalloproteinase-9 in the chondrocyte and synoviocyte cells is regulated via a novel mechanism: evidence for functional cooperation between serum amyloid A-activating factor-1 and AP-1. J Immunol 175:4039–4048

    CAS  PubMed  Google Scholar 

  75. Oda N, Abe M, Sato Y (1999) ETS-1 converts endothelial cells to the angiogenic phenotype by inducing the expression of matrix metalloproteinases and integrin β3. J Cell Physiol 178:121–132

    CAS  PubMed  Google Scholar 

  76. Murthy S, Ryan AJ, Carter AB (2012) SP-1 regulation of MMP-9 expression requires Ser586 in the PEST domain. Biochem J 445:229–236

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Taheri F, Bazan HE (2007) Platelet-activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP-9 in human corneal epithelial cells. Invest Ophthalmol Vis Sci 48:1931–1941

    PubMed  Google Scholar 

  78. Opdenakker G, Van den Steen PE, Dubois B, Nelissen I, Van Coillie E, Masure S, Proost P, Van Damme J (2001) Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol 69:851–859

    CAS  PubMed  Google Scholar 

  79. Liaudet L, Rosenblatt-Velin N (2013) Role of innate immunity in cardiac inflammation after myocardial infarction. Front Biosci (Schol Ed) 5:86–104

    Google Scholar 

  80. Abe Y, Kawakami M, Kuroki M, Yamamoto T, Fujii M, Kobayashi H, Yaginuma T, Kashii A, Saito M, Matsushima K (1993) Transient rise in serum interleukin-8 concentration during acute myocardial infarction. Br Heart J 70:132–134

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–1553

    CAS  PubMed  Google Scholar 

  82. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-α. Circ Res 81:627–635

    CAS  PubMed  Google Scholar 

  83. Bryant D, Becker L, Richardson J, Shelton J, Franco F, Peshock R, Thompson M, Giroir B (1998) Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 97:1375–1381

    CAS  PubMed  Google Scholar 

  84. Jordan JE, Zhao ZQ, Vinten-Johansen J (1999) The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 43:860–878

    CAS  PubMed  Google Scholar 

  85. Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, Sawyer DB, Levy D, Wilson PW, D’Agostino RB, Framingham Heart Study (2003) Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 107:1486–1491

    CAS  PubMed  Google Scholar 

  86. Amsterdam EA, Stahl GL, Pan HL, Rendig SV, Fletcher MP, Longhurst JC (1995) Limitation of reperfusion injury by a monoclonal antibody to C5a during myocardial infarction in pigs. Am J Physiol 268:H448–57

    CAS  PubMed  Google Scholar 

  87. Tyagi SC (1997) Proteinases and myocardial extracellular matrix turnover. Mol Cell Biochem 168:1–12

    CAS  PubMed  Google Scholar 

  88. Kusachi SN (2003) Fibrogenesis, cellular and molecular basis. In: Razzaque MS (eds) Myocardial infarction and cardiac fibrogenesis. New York, Kluwer Academic, 77–96

    Google Scholar 

  89. Zimmerman SD, Thomas DP, Velleman SG, Li X, Hansen TR, McCormick RJ (2001) Time course of collagen and decorin changes in rat cardiac and skeletal muscle post-MI. Am J Physiol Heart Circ Physiol 281:H1816–22

    CAS  PubMed  Google Scholar 

  90. Yabluchanskiy A, Chilton RJ, Lindsey ML (2013) Left ventricular remodeling: one small step for the extracellular matrix will translate to a giant leap for the myocardium. Congest Heart Fail 19:E5–E8

    PubMed Central  PubMed  Google Scholar 

  91. Kelly D, Cockerill G, Ng LL, Thompson M, Khan S, Samani NJ, Squire IB (2007) Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man: a prospective cohort study. Eur Heart J 28:711–718

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55–62

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoia JT, McClister DM Jr, Su H, Gannon J, MacGillivray C, Lee RT, Sinusas AJ, Spinale FG (2006) Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol 290:H232–H239

    CAS  PubMed  Google Scholar 

  94. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nübe O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    CAS  PubMed  Google Scholar 

  95. van den Borne SW, Cleutjens JP, Hanemaaijer R, Creemers EE, Smits JF, Daemen MJ, Blankesteijn WM (2009) Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction. Cardiovasc Pathol 18:37–43

    PubMed  Google Scholar 

  96. Villarreal FJ, Griffin M, Omens J, Dillmann W, Nguyen J, Covell J (2003) Early short-term treatment with doxycycline modulates postinfarction left ventricular remodeling. Circulation 108:1487–1492

    CAS  PubMed  Google Scholar 

  97. Gutierrez FR, Lalu MM, Mariano FS, Milanezi CM, Cena J, Gerlach RF, Santos JE, Torres-Dueñas D, Cunha FQ, Schulz R, Silva JS (2008) Increased activities of cardiac matrix metalloproteinases matrix metalloproteinase (MMP)-2 and MMP-9 are associated with mortality during the acute phase of experimental Trypanosoma cruzi infection. J Infect Dis 197:1468–1476

    CAS  PubMed  Google Scholar 

  98. Mukherjee R, Brinsa TA, Dowdy KB, Scott AA, Baskin JM, Deschamps AM, Lowry AS, Escobar GP, Lucas DG, Yarbrough WM, Zile MR, Spinale FG (2003) Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation 107:618–25

    CAS  PubMed  Google Scholar 

  99. Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, McClure KF, Mitchell PG, Libby P, Lee RT (1999) Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99:3063–3070

    CAS  PubMed  Google Scholar 

  100. Lauer D, Slavic S, Sommerfeld M, Thöne-Reineke C, Sharkovska Y, Hallberg A, Dahlöf B, Kintscher U, Unger T, Steckelings UM, Kaschina E (2014) Angiotensin type 2 receptor stimulation ameliorates left ventricular fibrosis and dysfunction via regulation of tissue inhibitor of matrix metalloproteinase 1/matrix metalloproteinase 9 axis and transforming growth factor β1 in the rat heart. Hypertension 63:e60–e67

    CAS  PubMed  Google Scholar 

  101. Zamilpa R, Lopez EF, Chiao YA, Dai Q, Escobar GP, Hakala K, Weintraub ST, Lindsey ML (2010) Proteomic analysis identifies in vivo candidate matrix metalloproteinase-9 substrates in the left ventricle post-myocardial infarction. Proteomics 10:2214–2223

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Matsumura S, Iwanaga S, Mochizuki S, Okamoto H, Ogawa S, Okada Y (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest 115:599–609

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S (2003) Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke 34:2165–2170

    PubMed  Google Scholar 

  104. van Dijk A, Niessen HW, Ursem W, Twisk JW, Visser FC, van Milligen FJ (2008) Accumulation of fibronectin in the heart after myocardial infarction: a putative stimulator of adhesion and proliferation of adipose-derived stem cells. Cell Tissue Res 332:289–298

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Bendrik C, Robertson J, Gauldie J, Dabrosin C (2008) Gene transfer of matrix metalloproteinase-9 induces tumor regression of breast cancer in vivo. Cancer Res 68:3405–3412

    CAS  PubMed  Google Scholar 

  106. Panchal VR, Rehman J, Nguyen AT, Brown JW, Turrentine MW, Mahomed Y, March KL (2004) Reduced pericardial levels of endostatin correlate with collateral development in patients with ischemic heart disease. J Am Coll Cardiol 43:1383–1387

    CAS  PubMed  Google Scholar 

  107. Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, Pierce RA, Shapiro SD (1998) Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161:6845–6852

    CAS  PubMed  Google Scholar 

  108. Rosenberg I, Cherayil BJ, Isselbacher KJ, Pillai S (1991) Mac-2-binding glycoproteins. Putative ligands for a cytosolic beta-galactoside lectin. J Biol Chem 266:18731–18736

    CAS  PubMed  Google Scholar 

  109. Sato S, Hughes RC (1992) Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin. J Biol Chem 267:6983–6990

    CAS  PubMed  Google Scholar 

  110. Ochieng J, Fridman R, Nangia-Makker P, Kleiner DE, Liotta LA, Stetler-Stevenson WG, Raz A (1994) Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. BioChemistry 33:14109–14114

    CAS  PubMed  Google Scholar 

  111. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, Larson MG, Levy D (2012) Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 60:1249–1256

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Iruela-Arispe ML (2008) Regulation of thrombospondin1 by extracellular proteases. Curr Drug Targets 9:863–868

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Sato A, Aonuma K, Imanaka-Yoshida K, Yoshida T, Isobe M, Kawase D, Kinoshita N, Yazaki Y, Hiroe M (2006) Serum tenascin-C might be a novel predictor of left ventricular remodeling and prognosis after acute myocardial infarction. J Am Coll Cardiol 47:2319–2325

    CAS  PubMed  Google Scholar 

  114. Franz M, Berndt A, Neri D, Galler K, Grün K, Porrmann C, Reinbothe F, Mall G, Schlattmann P, Renner A, Figulla HR, Jung C, Küthe F (2013) Matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, B+ tenascin-C and ED-A+ fibronectin in dilated cardiomyopathy: potential impact on disease progression and patients prognosis. Int J Cardiol 168:5344–5351

    Google Scholar 

  115. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem J 322:809–814

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Barallobre-Barreiro J, Didangelos A, Schoendube FA, Drozdov I, Yin X, Fernández-Caggiano M, Willeit P, Puntmann VO, Aldama-López G, Shah AM, Doménech N, Mayr M (2012) Proteomics analysis of cardiac extracellular matrix remodeling in a porcine model of ischemia/reperfusion injury. Circulation 125:789–802

    CAS  PubMed  Google Scholar 

  117. Writing Group Members, Roger VL, Go AS, Lloyd-Jones DM, et al (2012) On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee; On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation 125:e2–e220

    Google Scholar 

  118. Zouein FA, Kurdi M, Booz GW (2013) LIF and the heart: just another brick in the wall? Eur Cytokine Netw 24:11–19

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Marko-Varga G, Lindberg H, Löfdahl CG, Löfdahl CG, Jönsson P, Hansson L, Dahlbäck M, Lindquist E, Johansson L, Foster M, Fehniger TE (2005) Discovery of biomarker candidates within disease by protein profiling: principles and concepts. J Proteome Res 4:1200–1212

    CAS  PubMed  Google Scholar 

  120. Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113:2335–2362

    PubMed  Google Scholar 

  121. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Roderfeld M, Graf J, Giese B, Salguero-Palacios R, Tschuschner A, Müller-Newen G, Roeb E (2007) Latent MMP-9 is bound to TIMP-1 before secretion. Biol Chem 388:1227–1234

    CAS  PubMed  Google Scholar 

  123. Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL (1992) Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 267:4583–4591

    CAS  PubMed  Google Scholar 

  124. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biologicalactions and therapeutic opportunities. J Cell Sci 115:3719–3727

    CAS  PubMed  Google Scholar 

  125. Ikonomidis JS, Hendrick JW, Parkhurst AM, Herron AR, Escobar PG, Dowdy KB, Stroud RE, Hapke E, Zile MR, Spinale FG (2005) Accelerated LV remodeling after myocardial infarction in TIMP-1-deficient mice: effects of exogenous MMP inhibition. Am J Physiol Heart Circ Physiol 288:H149–158.

    CAS  PubMed  Google Scholar 

  126. Kandalam V, Basu R, Abraham T, Wang X, Awad A, Wang W, Lopaschuk GD, Maeda N, Oudit GY, Kassiri Z (2010) Early activation of matrix metalloproteinases underlies the exacerbated systolic and diastolic dysfunction in mice lacking TIMP3 following myocardial infarction. Am J Physiol Heart Circ Physiol 299:H1012–1023.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Kandalam V, Basu R, Abraham T, Wang X, Soloway PD, Jaworski DM, Oudit GY, Kassiri Z (2010) TIMP2 deficiency accelerates adverse post-myocardial infarction remodeling because of enhanced MT1-MMP activity despite lack of MMP2 activation. Circ Res 106:796–808

    CAS  PubMed  Google Scholar 

  128. Koskivirta I, Kassiri Z, Rahkonen O, Kiviranta R, Oudit GY, McKee TD, Kytö V, Saraste A, Jokinen E, Liu PP, Vuorio E, Khokha R (2010) Mice with tissue inhibitor of metalloproteinases 4 (Timp4) deletion succumb to induced myocardial infarction but not to cardiac pressure overload. J Biol Chem 285:24487–24493

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Hu J, Van den Steen PE, Sang QX, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6:480–498

    CAS  PubMed  Google Scholar 

  130. Muroski ME, Roycik MD, Newcomer RG, Van den Steen PE, Opdenakker G, Monroe HR, Sahab ZJ, Sang QX (2008) Matrix metalloproteinase-9/gelatinase B is a putative therapeutic target of chronic obstructive pulmonary disease and multiple sclerosis. Curr Pharm Biotechnol 9:34–46

    CAS  PubMed  Google Scholar 

  131. Bench TJ, Jeremias A, Brown DL (2011) Matrix metalloproteinase inhibition with tetracyclines for the treatment of coronary artery disease. Pharmacol Res 64:561–566

    CAS  PubMed  Google Scholar 

  132. Romero-Perez D, Fricovsky E, Yamasaki KG, Griffin M, Barraza-Hidalgo M, Dillmann W, Villarreal F (2008) Cardiac uptake of minocycline and mechanisms for in vivo cardioprotection. J Am Coll Cardiol 52:1086–1094

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Salo T, Soini Y, Oiva J, Kariylitalo, Nissinen A, Biancari F, Juvonen T, Satta J (2006) Chemically modified tetracyclines (CMT-3 and CMT-8) enable control of the pathologic remodellation of human aortic valve stenosis via MMP-9 and VEGF inhibition. Int J Cardiol 111:358–364

    PubMed  Google Scholar 

  134. Martens E, Leyssen A, Van Aelst I, Fiten P, Piccard H, Hu J, Descamps FJ, Van den Steen PE, Proost P, Van Damme J, Liuzzi GM, Riccio P, Polverini E, Opdenakker G (2007) A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim Biophys Acta 1770:178–186

    CAS  PubMed  Google Scholar 

  135. Hadass O, Tomlinson BN, Gooyit M, Chen S, Purdy JJ, Walker JM, Zhang C, Giritharan AB, Purnell W, Robinson CR 2nd, Shin D, Schroeder VA, Suckow MA, Simonyi A, Y Sun G, Mobashery S, Cui J, Chang M, Gu Z (2013) Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury. PLoS ONE 8:e76904

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Jiang B, Li D, Deng Y, Teng F, Chen J, Xue S, Kong X, Luo C, Shen X, Jiang H, Xu F, Yang W, Yin J, Wang Y, Chen H, Wu W, Liu X, Guo DA (2013) Salvianolic acid A, a novel matrix metalloproteinase-9 inhibitor, prevents cardiac remodeling in spontaneously hypertensive rats. PLoS ONE 8:e59621

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Yamamoto D, Takai S, Jin D, Inagaki S, Tanaka K, Miyazaki M (2007) Molecular mechanism of imidapril for cardiovascular protection via inhibition of MMP-9. J Mol Cell Cardiol 43:670–676

    CAS  PubMed  Google Scholar 

  138. Rastogi S, Mishra S, Zacà V, Alesh I, Gupta RC, Goldstein S, Sabbah HN (2007) Effect of long-term monotherapy with the aldosterone receptor blocker eplerenone on cytoskeletal proteins and matrix metalloproteinases in dogs with heart failure. Cardiovasc Drugs Ther 21:415–422

    CAS  PubMed  Google Scholar 

  139. Deten A, Volz HC, Holzl A, Briest W, Zimmer HG (2003) Effect of propranolol on cardiac cytokine expression after myocardial infarction in rats. Mol Cell Biochem 251:127–137

    CAS  PubMed  Google Scholar 

  140. Pauschinger M, Rutschow S, Chandrasekharan K, Westermann D, Weitz A, Peter Schwimmbeck L, Zeichhardt H, Poller W, Noutsias M, Li J, Schultheiss HP, Tschope C (2005) Carvedilol improves left ventricular function in murine coxsackievirus-induced acute myocarditis association with reduced myocardial interleukin-1beta and MMP-8 expression and a modulated immune response. Eur J Heart Fail 7:444–452

    CAS  PubMed  Google Scholar 

  141. de Castro Brás LE, Cates CA, Deleon-Pennell KY, Ma Y, Iyer RP, Halade GV, Yabluchanskiy A, Fields GB, Weintraub ST, Lindsey ML (2014) Citrate synthase is a novel in vivo matrix metalloproteinase-9 substrate that regulates mitochondrial function in the post-myocardial infarction left ventricle. Antioxid Redox Signal 21:1974–1985

    PubMed  Google Scholar 

  142. Zamilpa R, Ibarra J, de Castro Brás LE, Ramirez TA, Nguyen N, Halade GV, Zhang J, Dai Q, Dayah T, Chiao YA, Lowell W, Ahuja SS, D’Armiento J, Jin YF, Lindsey ML (2012) Transgenic overexpression of matrix metalloproteinase-9 in macrophages attenuates the inflammatory response and improves left ventricular function post-myocardial infarction. J Mol Cell Cardiol 53:599–608

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Yang Y, Ma Y, Han W, Li J, Xiang Y, Liu F, Ma X, Zhang J, Fu Z, Su YD, Du XJ, Gao XM (2008) Age-related differences in postinfarct left ventricular rupture and remodeling. Am J Physiol Heart Circ Physiol 294:H1815–22

    CAS  PubMed  Google Scholar 

  144. Mukherjee R, Mingoia JT, Bruce JA, Austin JS, Stroud RE, Escobar GP, McClister DM Jr, Allen CM, Alfonso-Jaume MA, Fini ME, Lovett DH, Spinale FG (2006) Selective spatiotemporal induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 transcription after myocardial infarction. Am J Physiol Heart Circ Physiol 291:H2216–28

    CAS  PubMed  Google Scholar 

  145. Renko J, Kalela A, Jaakkola O, Laine S, Höyhtyä M, Alho H, Nikkari ST (2004) Serum matrix metalloproteinase-9 is elevated in men with a history of myocardial infarction. Scand J Clin Lab Invest 64:255–261

    CAS  PubMed  Google Scholar 

  146. Kai H, Ikeda H, Yasukawa H, Kai M, Seki Y, Kuwahara F, Ueno T, Sugi K, Imaizumi T (1998) Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 32:368–372

    CAS  PubMed  Google Scholar 

  147. Símová J, Skvor J, Slovák D, Mazura I, Zvárová J (2013) Serum levels of matrix metalloproteinases 2 and 9 in patients with acute myocardial infarction. Folia Biol (Praha) 59:181–187

    Google Scholar 

  148. Squire IB, Evans J, Ng LL, Loftus IM, Thompson MM (2004) Plasma mmp-9 and mmp-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. J Card Fail 10:328–333

    CAS  PubMed  Google Scholar 

  149. Inokubo Y, Hanada H, Ishizaka H, Fukushi T, Kamada T, Okumura K (2001) Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J 141:211–217

    CAS  PubMed  Google Scholar 

  150. Kaden JJ, Dempfle CE, Sueselbeck T, Brueckmann M, Poerner TC, Haghi D, Haase KK, Borggrefe M (2003) Time-dependent changes in the plasma concentration of matrix metalloproteinase 9 after acute myocardial infarction. Cardiology 99:140–144

    CAS  PubMed  Google Scholar 

  151. Orn S, Manhenke C, Squire IB, Ng L, Anand I, Dickstein K (2007) Plasma mmp-2, mmp-9 and n-bnp in long-term survivors following complicated myocardial infarction: relation to cardiac magnetic resonance imaging measures of left ventricular structure and function. J Card Fail 13:843–849

    CAS  PubMed  Google Scholar 

  152. van den Borne SW, Cleutjens JP, Hanemaaijer R (2009) Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction. Cardiovasc Pathol 18:37–43

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from National Institutes of Health (NIH) for T32HL105324, HL101430, HL075360, HL051971, GM104357, and HHSN 268201000036C (N01-HV-00244) for the San Antonio Cardiovascular Proteomics Center, and from the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development Award 5I01BX000505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merry L. Lindsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zouein, F., DeCoux, A., Tian, Y., White, J., Jin, YF., Lindsey, M. (2015). Matrix Metalloproteinase 9 (MMP-9). In: Dixon, I., Wigle, J. (eds) Cardiac Fibrosis and Heart Failure: Cause or Effect?. Advances in Biochemistry in Health and Disease, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-17437-2_13

Download citation

Publish with us

Policies and ethics