Skip to main content

Remodelling of the Cardiac Extracellular Matrix: Role of Collagen Degradation and Accumulation in Pathogenesis of Heart Failure

  • Chapter
  • First Online:
Cardiac Fibrosis and Heart Failure: Cause or Effect?

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 13))

  • 1341 Accesses

Abstract

The extracellular matrix (ECM) serves a number of functions in every tissue including the myocardium. While the function of ECM as a structural scaffold is well established, it has become increasingly recognized that it plays a number of additional functions including providing a reservoir for growth factors and cytokines allowing their rapid release and activation in response to environmental cues. In addition, components of the ECM are critical in the interstitial transport of numerous molecules and drugs. Therefore, impaired integrity of the ECM would influence multiple aspects of an organ’s structural and function. In the myocardium, the primary component of the ECM network structure is the fibrillar collagens I and III. Multiple steps and various enzymes are involved from collagen mRNA synthesis to collagen fibre formation. Alterations in each step can impact collagen fibre production resulting in an uncoupling between collagen mRNA and protein levels. In this chapter, we will provide an overview of the mechanisms involved in myocardial fibrosis, the disease-dependent nature and consequence of different types of fibrosis, clinical biomarkers of collagen turnover, and potential therapeutic approaches in managing myocardial fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128:388–400

    PubMed Central  PubMed  Google Scholar 

  2. Heidenreich PA, Trogdon JG, Khavjou OA et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123:933–944

    PubMed  Google Scholar 

  3. Diez J, Querejeta R, Lopez B et al (2002) Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105:2512–2517

    CAS  PubMed  Google Scholar 

  4. Segura AM, Frazier OH, Buja LM (2014) Fibrosis and heart failure. Heart Fail Rev 41(4):389–394

    Google Scholar 

  5. Goldsmith EC, Bradshaw AD, Spinale FG (2013) Cellular mechanisms of tissue fibrosis. 2. Contributory pathways leading to myocardial fibrosis: moving beyond collagen expression. Am J Physiol Cell Physiol 304:C393–402

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Harris BS, Zhang Y, Card L et al (2011) SPARC regulates collagen interaction with cardiac fibroblast cell surfaces. Am J Physiol Heart Circ Physiol 301:H841–847

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Leening MJ, Steyerberg EW (2013) Fibrosis and mortality in patients with dilated cardiomyopathy. JAMA 309:2547–2548

    CAS  PubMed  Google Scholar 

  8. Moore L, Fan D, Basu R et al (2012) Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail Rev 17:693–706

    CAS  PubMed  Google Scholar 

  9. Spinale FG, Zile MR (2013) Integrating the myocardial matrix into heart failure recognition and management. Circ Res 113:725–738

    CAS  PubMed  Google Scholar 

  10. Fan D, Creemers EE, Kassiri Z (2014) Matrix as an interstitial transport system. Circ Res 114:889–902

    CAS  PubMed  Google Scholar 

  11. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40–51

    CAS  PubMed  Google Scholar 

  12. Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:15

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Petrov VV, Fagard RH, Lijnen PJ (2002) Stimulation of collagen production by transforming growth factor-beta1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension 39:258–263

    CAS  PubMed  Google Scholar 

  14. Houser SR, Margulies KB, Murphy AM et al (2012) Animal models of heart failure a scientific statement from the american heart association. Circ res 111:131–150

    CAS  PubMed  Google Scholar 

  15. Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics—2012 update a report from the american heart association. Circulation 125:e2–e220

    PubMed Central  PubMed  Google Scholar 

  16. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Lambert JM, Lopez EF, Lindsey ML (2008) Macrophage roles following myocardial infarction. Int J Cardiol 130:147–58

    PubMed Central  PubMed  Google Scholar 

  18. Haudek SB, Xia Y, Huebener P et al (2006) Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A 103:18284–18289

    CAS  PubMed Central  PubMed  Google Scholar 

  19. van Amerongen MJ, Bou-Gharios G, Popa E et al (2008) Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol 214:377–386

    PubMed  Google Scholar 

  20. van Amerongen MJ, Harmsen MC, van Rooijen N et al (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829

    PubMed Central  PubMed  Google Scholar 

  21. Widgerow AD (2011) Cellular/extracellular matrix cross‐talk in scar evolution and control. Wound Repair and Regen 19:117–133

    Google Scholar 

  22. Weber KT, Sun Y, Bhattacharya SK et al (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10:15–26

    CAS  PubMed  Google Scholar 

  23. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Robert V, Heymes C, Silvestre JS, et al (1999) Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. Hypertension 33:981–986

    CAS  PubMed  Google Scholar 

  25. Schnee JM, Hsueh WA (2000) Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res 46:264–268

    CAS  PubMed  Google Scholar 

  26. Lijnen P, Petrov V (2000) Induction of cardiac fibrosis by aldosterone. J Mol Cell Cardiol 32:865–879

    CAS  PubMed  Google Scholar 

  27. Tsukamoto Y, Mano T, Sakata Y et al (2013) A novel heart failure mice model of hypertensive heart disease by angiotensin II infusion, nephrectomy, and salt loading. Am J Physiol Heart Circ Physiol 305:H1658–1667

    CAS  PubMed  Google Scholar 

  28. Sharpe N, Smith H, Murphy J et al (1991) Early prevention of left ventricular dysfunction after myocardial infarction with angiotensin-converting-enzyme inhibition. Lancet 337:872–876

    CAS  PubMed  Google Scholar 

  29. Granger CB, McMurray JJ, Yusuf S et al (2003) Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet 362:772–776

    CAS  PubMed  Google Scholar 

  30. Watanabe T, Barker TA, Berk BC (2005) Angiotensin II and the endothelium: diverse signals and effects. Hypertension 45:163–169

    CAS  PubMed  Google Scholar 

  31. Bishop J, Laurent G (1995) Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J 16:38–44

    CAS  PubMed  Google Scholar 

  32. Vasan RS, Levy D (2000) Defining diastolic heart failure: a call for standardized diagnostic criteria. Circulation 101:2118–21

    CAS  PubMed  Google Scholar 

  33. Aljaroudi W, Alraies MC, Halley C et al (2012) Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation 125:782–788

    PubMed  Google Scholar 

  34. Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637–1652

    CAS  PubMed  Google Scholar 

  35. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434

    CAS  PubMed  Google Scholar 

  36. Shamhart PE, Meszaros JG (2010) Non-fibrillar collagens: key mediators of post-infarction cardiac remodeling? J Mol Cell Cardiol 48:530–537

    CAS  PubMed  Google Scholar 

  37. Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120:1955–1958

    CAS  PubMed  Google Scholar 

  38. Vuorio E, de Crombrugghe B (1990) The family of collagen genes. Annu Rev Biochem 59:837–872

    CAS  PubMed  Google Scholar 

  39. Borg TK, Sullivan T, Ivy J (1982) Functional arrangement of connective tissue in striated muscle with emphasis on cardiac muscle. Scan Electron Microsc 1775–1784 PMID: 7184150

    Google Scholar 

  40. Hinz B, Phan SH, Thannickal VJ et al (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Baum J, Duffy HS (2011) Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol 57:376–379

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Bryant JE, Shamhart PE, Luther DJ et al (2009) Cardiac myofibroblast differentiation is attenuated by alpha(3) integrin blockade: potential role in post-MI remodeling. J Mol Cell Cardiol 46:186–192

    CAS  PubMed  Google Scholar 

  43. van den Borne SW, Diez J, Blankesteijn WM et al (2010) Myocardial remodeling after ­infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30–37

    PubMed  Google Scholar 

  44. Yabluchanskiy A, Li Y, Chilton RJ, Lindsey ML (2013) Matrix metalloproteinases: drug ­targets for myocardial infarction. Curr Drug Targets 14:276–286

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Shinde AV, Frangogiannis NG (2013) Fibroblasts in myocardial infarction: a role in inflammation and repair. J Mol Cell Cardiol 70:74–82

    Google Scholar 

  46. Leask A (2010) Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, ­endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106:1675–1680

    CAS  PubMed  Google Scholar 

  47. Dostal DE, Hunt RA, Kule CE et al (1997) Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effects and signal transduction pathways. J Mol Cell Cardiol 29:2893–2902

    CAS  PubMed  Google Scholar 

  48. Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292

    CAS  PubMed  Google Scholar 

  49. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed Central  PubMed  Google Scholar 

  50. Kassiri Z, Defamie V, Hariri M et al (2009) Simultaneous transforming growth factor beta-tumor necrosis factor activation and cross-talk cause aberrant remodeling response and myocardial fibrosis in Timp3-deficient heart. J Biol Chem 284:29893–29904

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor beta1– an intimate relationship. Eur J Cell Biol 87:601–615

    CAS  PubMed  Google Scholar 

  52. Ge G, Greenspan DS (2006) BMP1 controls TGFbeta1 activation via cleavage of latent TGFbeta-binding protein. J Cell Biol 175:111–120

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Lee MK, Pardoux C, Hall MC et al (2007) TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 26:3957–3967

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Yamashita M, Fatyol K, Jin C et al (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31:918–924

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Kang JS, Liu C, Derynck R (2009) New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol 19:385–394

    CAS  PubMed  Google Scholar 

  56. Nakao A, Afrakhte M, Moren A et al (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389:631–635

    CAS  PubMed  Google Scholar 

  57. Holm TM, Habashi JP, Doyle JJ et al (2011) Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332:358–361

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118:10–24

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Westermann D, Lindner D, Kasner M et al (2011) Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 4:44–52

    PubMed  Google Scholar 

  60. Frantz S, Hu K, Adamek A et al (2008) Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 103:485–492

    CAS  PubMed  Google Scholar 

  61. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Kuwahara F, Kai H, Tokuda K et al (2002) Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106:130–135

    CAS  PubMed  Google Scholar 

  63. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3:1–30

    CAS  PubMed  Google Scholar 

  64. Lamande SR, Bateman JF (1999) Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones. Semin Cell Dev Biol 10:455–464

    CAS  PubMed  Google Scholar 

  65. Jin L, Pahuja KB, Wickliffe KE et al (2012) Ubiquitin-dependent regulation of COPII coat size and function. Nature 482:495–500

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Kobayashi K, Luo M, Zhang Y et al (2009) Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11:46–55

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Baicu CF, Zhang Y, Van Laer AO et al (2012) Effects of the absence of procollagen C-endopeptidase enhancer-2 on myocardial collagen accumulation in chronic pressure overload. Am J Physiol Heart Circ Physiol 303:H234–240

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Steiglitz BM, Keene DR, Greenspan DS (2002) PCOLCE2 encodes a functional procollagen C-proteinase enhancer (PCPE2) that is a collagen-binding protein differing in distribution of expression and post-translational modification from the previously described PCPE1. J Biol Chem 277:49820–49830

    CAS  PubMed  Google Scholar 

  69. Vadon-Le Goff S, Kronenberg D, Bourhis JM et al (2011) Procollagen C-proteinase enhancer stimulates procollagen processing by binding to the C-propeptide region only. J Biol Chem 286:38932–38938

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Broder C, Arnold P, Vadon-Le Goff S et al (2013) Metalloproteases meprin alpha and meprin beta are C- and N-procollagen proteinases important for collagen assembly and tensile strength. Proc Natl Acad Sci U S A 110:14219–14224

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Zuurmond AM, van der Slot-Verhoeven AJ, van Dura EA et al (2005) Minoxidil exerts different inhibitory effects on gene expression of lysyl hydroxylase 1, 2, and 3: implications for collagen cross-linking and treatment of fibrosis. Matrix Biol 24:261–270

    CAS  PubMed  Google Scholar 

  72. Eyre D, Shao P, Weis MA, Steinmann B (2002) The kyphoscoliotic type of Ehlers-Danlos syndrome (type VI): differential effects on the hydroxylation of lysine in collagens I and II revealed by analysis of cross-linked telopeptides from urine. Mol Genet Metab 76:211–216

    CAS  PubMed  Google Scholar 

  73. Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Fitzgerald MC, Schwarzbauer JE (1998) Importance of the basement membrane protein SPARC for viability and fertility in Caenorhabditis elegans. Curr Biol 8:1285–1288

    CAS  PubMed  Google Scholar 

  75. Myers DL, Harmon KJ, Lindner V, Liaw L (2003) Alterations of arterial physiology in osteopontin-null mice. Arterioscler Thromb Vasc Biol 23:1021–1028

    CAS  PubMed  Google Scholar 

  76. Schellings MW, Vanhoutte D, Swinnen M et al (2009) Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med 206:113–123

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Murry CE, Giachelli CM, Schwartz SM, Vracko R (1994) Macrophages express osteopontin during repair of myocardial necrosis. Am J Pathol 145:1450–1462

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Trueblood NA, Xie Z, Communal C et al (2001) Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88:1080–1087

    CAS  PubMed  Google Scholar 

  79. Bradshaw AD, Baicu CF, Rentz TJ et al (2009) Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing. Circulation 119:269–280

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Xie Z, Singh M, Singh K (2004) Osteopontin modulates myocardial hypertrophy in response to chronic pressure overload in mice. Hypertension 44:826–831

    CAS  PubMed  Google Scholar 

  81. Morrison CJ, Butler GS, Rodriguez D, Overall CM (2009) Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol 21:645–653

    CAS  PubMed  Google Scholar 

  82. Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803:39–54

    CAS  PubMed  Google Scholar 

  83. Kassiri Z, Oudit GY, Sanchez O et al (2005) Combination of tumor necrosis factor-alpha ablation and matrix metalloproteinase inhibition prevents heart failure after pressure overload in tissue inhibitor of metalloproteinase-3 knock-out mice. Circ Res 97:380–390

    CAS  PubMed  Google Scholar 

  84. Spinale FG, Janicki JS, Zile MR (2013) Membrane-associated matrix proteolysis and heart failure. Circ Res 112:195–208

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Ma Y, Chiao YA, Zhang J et al (2012) Matrix metalloproteinase-28 deletion amplifies inflammatory and extracellular matrix responses to cardiac aging. Microsc Microanal 18:81–90

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Oh J, Takahashi R, Kondo S et al (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107:789–800

    CAS  PubMed  Google Scholar 

  87. Sottrup-Jensen L, Birkedal-Hansen H (1989) Human fibroblast collagenase-alpha-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian alpha-macroglobulins. J Biol Chem 264:393–401

    CAS  PubMed  Google Scholar 

  88. Nuttall RK, Sampieri CL, Pennington CJ et al (2004) Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. FEBS Lett 563:129–134

    CAS  PubMed  Google Scholar 

  89. Zannad F, Rossignol P, Iraqi W (2010) Extracellular matrix fibrotic markers in heart failure. Heart Fail Rev 15:319–329

    CAS  PubMed  Google Scholar 

  90. Creemers EE, Cleutjens JP, Smits JF, Daemen MJ (2001) Matrix metalloproteinase inhibition after myocardial infarction a new approach to prevent heart failure? Circ Res 89:201–210

    CAS  PubMed  Google Scholar 

  91. Matsumura S, Iwanaga S, Mochizuki S et al (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest 115:599–609

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Yabluchanskiy A, Ma Y, Iyer RP et al (2013) Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology (Bethesda) 28:391–403

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Bourhis JM, Vadon-Le Goff S, Afrache H et al (2013) Procollagen C-proteinase enhancer grasps the stalk of the C-propeptide trimer to boost collagen precursor maturation. Proc Natl Acad Sci U S A 110:6394–6399

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Sundstrom J, Vasan RS (2006) Circulating biomarkers of extracellular matrix remodeling and risk of atherosclerotic events. Curr Opin Lipidol 17:45–53

    PubMed  Google Scholar 

  95. Laviades C, Varo N, Fernandez J, et al (1998) Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation 98:535–540

    CAS  PubMed  Google Scholar 

  96. Lindsay MM, Maxwell P, Dunn FG (2002) TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 40:136–141

    CAS  PubMed  Google Scholar 

  97. Querejeta R, Varo N, Lopez B et al (2000) Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 101:1729–1735

    CAS  PubMed  Google Scholar 

  98. Lin YH, Chiu YW, Shiau YC et al (2006) The relation between serum level of amioterminal propeptide of type I procollagen and diastolic dysfunction in hypertensive patients without diabetes mellitus: a pilot study. J Hum Hypertens 20:964–967

    CAS  PubMed  Google Scholar 

  99. Zannad F, Alla F, Dousset B et al (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102:2700–2706

    CAS  PubMed  Google Scholar 

  100. Kallergis EM, Manios EG, Kanoupakis EM et al (2008) Extracellular matrix alterations in patients with paroxysmal and persistent atrial fibrillation: biochemical assessment of collagen type-I turnover. J Am Coll Cardiol 52:211–215

    CAS  PubMed  Google Scholar 

  101. Chen CA, Tseng WY, Wang JK et al (2013) Circulating biomarkers of collagen type I metabolism mark the right ventricular fibrosis and adverse markers of clinical outcome in adults with repaired tetralogy of Fallot. Int J Cardiol 167:2963–2968

    PubMed  Google Scholar 

  102. Piestrzeniewicz K, Luczak K, Maciejewski M et al (2014) Clinical outcome, echocardiographic assessment, neurohormonal and collagen turnover markers in “low flow” severe aortic stenosis with high transvalvular gradient. Pol Arch Med Wewn 124:1–2, 19–26

    Google Scholar 

  103. Kupari M, Laine M, Turto H et al (2013) Circulating collagen metabolites, myocardial fibrosis and heart failure in aortic valve stenosis. J Heart Valve Dis 22:166–176

    PubMed  Google Scholar 

  104. Lin YH, Ho YL, Wang TD et al (2006) The relation of amino-terminal propeptide of type III procollagen and severity of coronary artery disease in patients without myocardial infarction or hibernation. Clin Biochem 39:861–866

    CAS  PubMed  Google Scholar 

  105. Poulsen SH, Host NB, Jensen SE, Egstrup K (2000) Relationship between serum amino-terminal propeptide of type III procollagen and changes of left ventricular function after acute myocardial infarction. Circulation 101:1527–1532

    CAS  PubMed  Google Scholar 

  106. Host NB, Jensen LT, Bendixen PM et al (1995) The aminoterminal propeptide of type III procollagen provides new information on prognosis after acute myocardial infarction. Am J Cardiol 76:869–873

    CAS  PubMed  Google Scholar 

  107. Manhenke C, Orn S, Squire I et al (2011) The prognostic value of circulating markers of collagen turnover after acute myocardial infarction. Int J Cardiol 150:277–282

    PubMed  Google Scholar 

  108. Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961

    CAS  PubMed  Google Scholar 

  109. Barry-Hamilton V, Spangler R, Marshall D et al (2010) Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16:1009–1017

    CAS  PubMed  Google Scholar 

  110. Elnakish MT, Kuppusamy P, Khan M (2013) Stem cell transplantation as a therapy for cardiac fibrosis. J Pathol 229:347–354

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zamaneh Kassiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Takawale, A., Shen, M., Fan, D., Kassiri, Z. (2015). Remodelling of the Cardiac Extracellular Matrix: Role of Collagen Degradation and Accumulation in Pathogenesis of Heart Failure. In: Dixon, I., Wigle, J. (eds) Cardiac Fibrosis and Heart Failure: Cause or Effect?. Advances in Biochemistry in Health and Disease, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-17437-2_12

Download citation

Publish with us

Policies and ethics