Introduction and Geological Setting of the Iberian Pyrite Belt

  • C. InvernoEmail author
  • A. Díez-Montes
  • C. Rosa
  • J. García-Crespo
  • J. Matos
  • J. L. García-Lobón
  • J. Carvalho
  • F. Bellido
  • J. M. Castello-Branco
  • C. Ayala
  • M. J. Batista
  • F. Rubio
  • I. Granado
  • F. Tornos
  • J. T. Oliveira
  • C. Rey
  • Vítor Araújo
  • T. Sánchez-García
  • Z. Pereira
  • P. Represas
  • A. R. Solá
  • P. Sousa
Part of the Mineral Resource Reviews book series (MIRERE)


The 250 × 20–70 km Iberian Pyrite Belt (IPB) is a Variscan metallogenic province in SW Portugal and Spain hosting the largest concentration of massive sulphide deposits worldwide. The lowermost stratigraphic unit is the early Givetian to late Famennian-Strunian (base unknown) Phyllite-Quartzite Group (PQG), with shales, quartz-sandstones, quartzwacke siltstones, minor conglomerate and limestones at the top. The PQG is overlain by the Volcanic Sedimentary Complex (VSC), of late Famennian to mid-late Visean age, with a lower part of mafic volcanic rocks, rhyolites, dacites and dark shales, hosting VHMS deposits on top (many times capped by a jasper/chert layer), and an upper part, with dark, purple and other shales and volcanogenic/volcaniclastic rocks, carrying Mn oxide deposits. The VSC is covered by the thousands of meters thick Baixo Alentejo Flysch Group of late Visean to Moscovian age. The VSC comprises a bimodal submarine volcanic succession, with VHMS deposits spatially associated to dacites and rhyolites corresponding to effusive/explosive lava-cryptodome-pumice cone volcanoes. The lava/domes consist of coherent lithofacies surrounded by clast-rotated hyaloclastite breccia and minor autobreccia, with massive VHMS ore at the top of the felsic effusive units and stockworks in the autoclastic and pyroclastic breccias. The eastern IPB rocks are intruded by the voluminous Sierra Norte Batholith (tonalite-trondhjemite-granodiorite, TTG series). Felsic volcanic rocks (dacite to high-silica rhyolite) predominating over basalts and dolerites, belong to the calc-alkaline series and plot mostly in the within-plate field in tectonic discriminative diagrams. Several periods of volcanism, from 384 to 359 Ma are recognized. Dacites and rhyolites exhibit Nd and Sr enrichment, typical of a crustal signature, and their overall geochemistry suggests generation by fractionation/partial melting of amphibolites at low pressure. Trace elemental modelling of the basic rocks, involving tholeiitic lavas and alkaline basaltic lavas and dolerites, points to mixing between E- and N-MORB and assimilation of crustal material. Variscan NW-SE/W-E-trending and SW- or S-verging folds (with NE- or N-dipping planar cleavage) and thrusts, occur in west-central and eastern IPB, respectively. In late to post-Variscan time strike-slip oblique faults formed, either N-S to NNW-SSE or NE-SW to ENE-WSW, dextral or sinistral (both extensional), respectively. The first set hosts late Variscan Cu-Pb-Ba veins and Mesozoic(?) dolerite dykes. IPB contains over 90 VHMS deposits, estimated before erosion at >1700 Million tonnes (Mt), with 14.6 Mt Cu, 34.9 Mt Zn, 13.0 Mt Pb, 46,100 t Ag, 880 t Au and many other metals, particularly Sn. Eight of these are giant (≥100 Mt) VHMS deposits, namely Rio Tinto, Tharsis, Aznalcóllar-Los Frailes, Masa Valverde, Sotiel-Migollas and La Zarza (Spain) and Neves Corvo and Aljustrel (Portugal). The VHMS deposits are of the felsic-siliclastic type and mostly of the Zn–Pb–Cu and Zn–Cu–Pb metal content types. The deposits range in thickness from 1 m to tens of meters (plus increase from tectonic stacking) and up to a few kilometers in extension, and many are underlain by large stockwork zones. Their age is either Strunian (palynological age) in the southern IPB or mostly Tournaisian in the northern IPB. The major massive ore minerals are pyrite, sphalerite, chalcopyrite, galena (and cassiterite at Neves Corvo), also present with dominant quartz-chlorite-sericite-carbonate in the stockwork ore. Sericite and chlorite were also formed from additional alteration in the hanging wall rocks. Metal zonation in most VHMS deposits consists of a Cu-rich stockwork and base of the massive ore, with Zn–Pb massive ore above and extending laterally. S-, O-, H- and C-isotope data indicate that ore-forming fluids contain predominant or exclusive modified seawater. A magmatic fluid contribution to the dominant seawater has been proposed for some deposits. The deposits are exhalative or formed by shallow subsurface replacement of either muds/shales or coherent felsic volcanic rocks.


Massive Sulphide Massive Sulphide Deposit Volcanogenic Massive Sulphide Iberian Pyrite Belt Felsic Volcanic Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almodóvar, G.R., Saéz, R., Pons, J.M., Maestre, A., Toscano, M., Pascual, E. 1998. Geology and genesis of the Aznalcóllar massive sulphide deposits, Iberian Pyrite Belt, Spain. Mineralium Deposita, 33: 111-136.Google Scholar
  2. Arth, J.G., Barker, F., Peterman, Z.E., Friedman, I. 1978. Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas. Journal of Petrology, 19 (2): 289-316.Google Scholar
  3. Barrie, C.T., Amelin, Y., Pascual, E. 2002. U-Pb geochronology of VMS mineralisation in the Iberian Pyrite Belt. Mineralium Deposita, 37: 684-703.Google Scholar
  4. Barrie, C.T., Hannington, M.D., 1999. Introduction: Classification of VMS deposits based on host rock composition. Reviews in Economic Geology, 8: 1-12.Google Scholar
  5. Barriga, F.J.A.S. 1990. Metallogenesis in the Iberian Pyrite Belt. In: Dallmeyer, R.D., Martínez García, E., (eds.). Pre-Mesozoic Geology of Iberia. Berlin, Springer-Verlag, p. 369-379.Google Scholar
  6. Barriga, F.J.A.S., Fyfe, W.S. 1988. Giant pyritic base-metal deposits: The example of Feitais (Aljustrel, Portugal). Chemical Geology, 69: 331–343.Google Scholar
  7. Barriga, F.J.A.S., Kerrich, R. 1984. Extreme 18O-enriched volcanics and 18O-evolved marine water, Aljustrel, Iberian Pyrite Belt: Transition from high to low Rayleigh number convective regimes. Geochimica et Cosmochimica Acta, 48: 1021-1031.Google Scholar
  8. Barriga, F.J.A.S., Carvalho, D., Ribeiro, A. 1997. Introduction to the Iberian Pyrite Belt. In: Barriga, F.J.A.S., Carvalho, D. (eds.). Geology and VMS deposits of the Iberian Pyrite Belt. Society of Economic Geologists Neves Corvo Field Conference, Guidebook Series, 27: 1-20.Google Scholar
  9. Boogaard, M. V. 1963. Conodonts of upper Devonian and lower Carboniferous age from southern Portugal. Geol. Mijnbouw, 42 (8): 248-259.Google Scholar
  10. Boogaard, M. V., Schermerhorn, L.J.G. 1980. Conodont faunas from Portugal and southwestern Spain. Part 4- A Famennian conodont fauna near Nerva (Río Tinto). Scrip. Geol., 56: 1-14.Google Scholar
  11. Boogaard, M. V., Schermerhorn, L.J.G. 1981. Conodont faunas from Portugal and southwestern Spain. Part 6- A lower Famennian conodont fauna at Monte Forno da Cal (South Portugal). Scrip. Geol., 63, 1-16.Google Scholar
  12. Boulter, C.A. 1993. High-level peperitic sills at Río Tinto, Spain: Implications for stratigraphy and mineralization. Transactions Inst. Mining Metallurgy (Section B: Applied Earth Science), 10: B30-B38.Google Scholar
  13. Boulter, C.A. 1996. Extensional tectonics and magmatism as drivers of convection leading to Iberian massive sulphide deposits? Journal of the Geological Society, 153: 181-184.Google Scholar
  14. Braid, J.A, Murphy, J.B., Quesada, C., Mortensen, J. 2011. Tectonic escape of a crustal fragment during the closure of the Rheic Ocean: U-Pb detrital zircon data from the Late Paleozoic Pulo do Lobo and South Portuguese zones, southern Iberia. Journal of the Geologica Society, 168: 383-392.Google Scholar
  15. Carvalho, D. 1979. Geologia, metalogenia e metodologia da investigação de sulfuretos polimetálicos do Sul de Portugal. Comunicações Serviços Geológicos Portugal, 65: 169-191 (in Portuguese; abstract in English).Google Scholar
  16. Carvalho, D., Conde, L., Enrile, J.H., Oliveira, V., Schermerhorn, L.J.G.S. 1976. Livro-guia das excursões geológicas na Faixa Piritosa Ibérica, na III Reunião do Sudoeste no Maciço Hespérico da Península Ibérica. Comunicações Serviços Geológicos Portugal, 60: 271-315 (in Portuguese).Google Scholar
  17. Carvalho, D., Barriga, F.J.A.S., Munhá, J. 1999. Bimodal siliciclastic systems: the case of the Iberian Pyrite Belt. Reviews in Economic Geology, 8: 375-408.Google Scholar
  18. De La Rosa, J.D. 1992. Petrología de las rocas básicas y granitoides del Batolito de la Sierra Norte de Sevilla. Zona Surportuguesa. Macizo Ibérico. Unpublished Doctoral Thesis, Univ. of Sevilla, 312 pp.Google Scholar
  19. de Oliveira, D.P.S., Matos, J.X., Rosa, C.J.P., Rosa, D.R.N., Figueiredo, M.O., Silva, T.P., Guimarães, F., Carvalho, J.R.S., Pinto, A.M.M., Relvas, J.R.M.S., Reiser, F.K.M. 2011. The Lagoa Salgada orebody, Iberian Pyrite Belt, Portugal: Geology, distribution, mineralogy and geochemistry of Indium. Economic Geology, 106: 1111-1128.Google Scholar
  20. Díez-Montes, A., Bellido-Mulas, F. 2008. Magmatismo TTG y Al-K en la Zona Surportuguesa. Relaciones entre plutonismo y vulcanismo. VII Congreso Geológico de España. Las Palmas de Gran Canaria (España). Geo-Temas, 10: 1449-1452.Google Scholar
  21. Díez-Montes, A., Matas, J., Leyva, F., Martín Parra, L.M. 1999. Mapa geológico a escala 1:50.000, Hoja 939-III (Minas del Castillo de las Guardas). In: Donaire, M. and Almarza, J. (eds.). Investigación geológica y cartografía básica en la Faja Pirítica y áreas aledañas. Junta de Andalucía & Instituto Geológico y Minero de España. Available on line:
  22. Díez-Montes, A., Bellido, F., Sánchez García, T. 2011. TTG and Al-K magmatisms in the South Portuguese Zone. Relations between plutonism and volcanism. Seventh Hutton Symposium on Granites and Related Rocks. Ávila (Spain). Abstract Book, p. 47.Google Scholar
  23. Donaire, T., Sáez, R., Pascual, E. 2002. Rhyolitic globular peperites from the Aznalcóllar mining district (Iberian Pyrite Belt, Spain): physical and chemical controls. Journal of Volcanology and Geothermal Research, 114: 119-128.Google Scholar
  24. Dunning, G.R., Díez-Montes, A., Matas, J., Martín Parra, L.M., Almarza, J., Donaire, M. 2002. Geocronología U/Pb del volcanismo ácido y granitoides de la Faja Pirítica Ibérica (Zona Surportuguesa). Geogaceta: 32: 127-130Google Scholar
  25. Galley, A.G. 2003. Composite synvolcanic intrusions associated with Precambrian VMS-related hydrothermal systems. Mineralium Deposita, 38: 443-473.Google Scholar
  26. Gaspar, O.C., 1996. Microscopia e petrologia de minérios aplicadas à génese, exploração e mineralurgia dos sulfuretos maciços dos jazigos de Aljustrel e Neves-Corvo. Estudos, Notas e Trabalhos, Instituto Geológico e Mineiro, 38: 3-195 (in Portuguese; extended abstract in English).Google Scholar
  27. Gaspar, O.C. 2002. Mineralogy and sulfide mineral chemistry of the Neves-Corvo ores, Portugal: Insight into their genesis. Canadian Mineralogist, 40: 611-636.Google Scholar
  28. Gaspar, O., Pinto, A. 1991. The ore textures of the Neves-Corvo volcanogenic massive sulphides and their implications for ore beneficiation. Mineralogical Magazine, 55: 417-422.Google Scholar
  29. Gladney et al., 2014 (in press). The Gil Marquez pluton, Southern Iberia: Magmatism during continental amalgamation of Pangea. International Journal of Earth Sciences. Google Scholar
  30. González, F. 2005. Las pizarras negras del límite Devónico/Carbonífero de la Faja Pirítica Ibérica (SO de España). Estudio bioestratigráfico e implicaciones sobre la paleogeografía de la cuenca y el origen de las mineralizaciones de sulfuros. Ph.D. Thesis, Huelva, 200 p.Google Scholar
  31. González, F., Moreno, C., Sáez, R., Clayton, J. 2002. Ore genesis age of the Tharsis Mining District, Iberian Pyrite Belt: a palynological approach. Journal of the Geological Society,, 159, 229-232.Google Scholar
  32. Halsall, C.E. 1989. The relationship between intrusive magmatism, volcanism and massive sulphide mineralisation at Río Tinto, Spain. Unpublished Doctoral Thesis, Univ. of London, 298 pp.Google Scholar
  33. Hart, T.R., Gibson, H.L., Lesher, C.M. 2004. Trace element geochemistry and petrogenesis of felsic volcanic rocks associated with volcanogenic massive Cu-Zn-Pb sulfide deposits. Economic Geology, 99: 1003-1013.Google Scholar
  34. Huston, D.L., Relvas, J.M.R.S., Gemmell, J.B., Drieberg, S. 2011. The role of granites in volcanic-hosted ore-forming systems: an assessment of magmatic-hydrothermal contributions. Mineralium Deposita, 46: 473-507.Google Scholar
  35. IGME. 1982. Síntesis Geológica de la Faja Pirítica del SO de España. IGME, Madrid. 106 pp.Google Scholar
  36. Inverno, C.M.C., Solomon, M., Barton, M.D., Foden, J. 2008. The Cu-stockwork and massive sulfide ore of the Feitais volcanic-hosted massive sulfifide deposit, Iberian Pyrite Belt, Portugal: A mineralogical, fluid inclusion, and isotopic investigation. Economic Geology, 103: 241-267.Google Scholar
  37. Jorge, R., Fernandes, P., Pereira, Z., Oliveira, J.T. 2007. A late Famennian age storm-dominated succession at Berrocal, Iberian Pyrite Belt-Spain. In: Z. Pereira, J, T., Oliveira, R. Wicander (eds.), CIMP Lisbon 07- Joint Meeting of Spores /Pollen and Acritarch Sub-commissions. Abstracts, 83-87.Google Scholar
  38. Jorge R.C.G.S, Fernandes, J.P., Rodrigues, B., Pereira Z., Oliveira J.T. 2012. Geochemistry and provenance of the Carboniferous Baixo Alentejo Flysch Group, South Portuguese Zone. Sedimentary Geology, (2013),
  39. Junta de Andalucía, 1999. Project: Investigación geológica y cartografía básica en la Faja Pirítica y áreas aledañas. Junta de Andalucía & Instituto Geológico y Minero de España. Available on line:
  40. Large, R.R. 1992. Australian volcanic-hosted massive sulfide deposits: Features, styles, and genetic models. Economic Geology, 87: 471-510.Google Scholar
  41. Laznicka, P. 1999. Quantitative relationships among giant deposits of metals. Economic Geology, 94: 455-473.Google Scholar
  42. Leca, X., Ribeiro, A., Oliveira, J.T., Silva, J.B., Albouy, L., Carvalho, D., Merino, F., 1983. Cadre Géologique des Mineralisations de Neves Corvo (Baixo Alentejo, Portugal). Lithostratigraphie, Paléologéographie et Tectonique. Mémoire Bureau de Recherches Géologiques et Minières, 121, 80 pp.Google Scholar
  43. Leistel, J.M., Marcoux, E., Thiéblemont, D., Quesada, C., Sánchez, A., Almodóvar, G.R., Pascual, E., Sáez, R. 1998. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Mineralium Deposita, 33: 2-30.Google Scholar
  44. Leitão, J. 1997. Geology of the Aljustrel massive sulfide deposits. Society of Economic Geologists Field Trip Guidebook Series, 27: 82-97.Google Scholar
  45. Lesher, C.M., Goodwin, A.M., Campbell, I.H., Gorton, M.P. 1986. Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior province, Canada. Canadian Journal of Earth Sciences, 23: 222-237.Google Scholar
  46. Liñán, C. 1994. Mapa Geológico de la Península Ibérica, Baleares y Canarias, escala 1:1,000,000: Madrid, Instituto Tecnológico Geominero de España.Google Scholar
  47. López, M.J., , Moreno, C., González, F., Dino, R., Antoniolli, L. 2004. Palinostratigrafía del Grupo Pizarroso-Cuartzítico del Sector más oriental de la Faja Pirítica Ibérica, SO de España. Revista Española de Micropaleontología, 36 (2): 279-304.Google Scholar
  48. Mantero, E.M., García Navarro, E., Alonso-Chaves, F.M., Martín Parra. L.M., Matas, J., Azor, J. 2007. La Zona Sudportuguesa: propuesta para la división de un bloque continental en dominios. Geogaceta, 43: 27-30.Google Scholar
  49. Marcoux, E. 1998. Lead isotope systematics of the giant massive sulfide deposits in the Iberian Pyrite Belt. Mineralium Deposita, 33: 45-58.Google Scholar
  50. Marcoux, E., Moëlo, Y., Leistel, J.M. 1996. Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt. Mineralium Deposita, 31: 1-26.Google Scholar
  51. Martí Molist, J., Mitjavila de Balanzó, J., Soriano Clemente, C., Viladevall Solé, M. 1994. Proyecto de investigación Fundació Bosch i Gimpera-ITGE sobre la reconstrucción paleogeográfica y volcanológica de la Faja Pirítica del SW de España. IGME, Unpublished open-file report, code: 25072, 51 p.Google Scholar
  52. Mathur, R., Ruiz, J., Tornos, F. 1999. Ages and sources of the ore at Tharsis and Rio Tinto, Iberian Pyrite Belt, from Re-Os isotopes. Mineralium Deposita, 34: 790–793.Google Scholar
  53. Matos, J.X., Pereira, Z., Oliveira, V., Oliveira, J.T. 2006. The geological setting of the São Domingos pyrite orebody, Iberian Pyrite Belt. VII Congresso Nacional Geologia, Estremoz, Univ. Évora, Portugal, 283–286.Google Scholar
  54. Matos, J.X., Barriga, F.J.A.S., Oliveira, V.M.J., Relvas, J.M.R.S., Conceição, P. 2000. The structure and hydrothermal alteration of the Lagoa Salgada orebody (Iberian Pyrite Belt – Sado Tertiary Basin). Volcanic Environments and Massive Sulfide Deposits – SEG/CODES International Conference Abstracts Volume-., Tasmania, Australia, 119–121.Google Scholar
  55. Matos, J., Pereira, Z., Rosa, C., Rosa, D. N, Oliveira, J. T., Relvas, J., 2011. A key time frame for VMS deposit exploration in the Iberian Pyrite belt. SGA 2011, 11 th Biennial Meeting, Antofagasta, Chile, 790-792.Google Scholar
  56. Mitjavila, J., Martí, J., Soriano, C. 1997. Magmatic evolution and tectonic setting of Iberian Pyrite Belt volcanism. Journal of Petrology, 38: 727-755.Google Scholar
  57. Mitsuno, C., Nakamura, T., Kanehira, K., Sugita, M., Kase, K., Thadeu, D., Carvalho, D., Arribas, A. 1988. Geological studies of the “Iberian Pyrite Belt”– with special reference to its genetic correlation of the Yanahara ore deposit and others in the inner zone of south-west Japan.. University Okayma, Japan, 300 p.Google Scholar
  58. Moreno, C., Sáez, R., 1990. Sedimentación marina somera en el Devónico del Anticlinorio de Puebla de Guzman, Faja Pirítica Ibérica. Geogaceta, 8: 62-65.Google Scholar
  59. Moreno, C., Sierra, S., Sáez, R., 1995. Mega-debris flows en el transito Devónico-Carbonífero de la Faja Piritica Ibérica. Geogaceta, 17: 9-11.Google Scholar
  60. Moura, A. 2005. Fluids from the Neves Corvo massive sulphide ores, Iberian Pyrite Belt, Portugal. Chemical Geology, 223 (1–3), 153–169.Google Scholar
  61. Munhá, J. 1983. Hercynian magmatism in the Iberian Pyrite Belt. In: Sousa, M.J.L., Oliveira, J.T. (eds.). The Carboniferous of Portugal. Memória Serviços Geológicos Portugal, 29: 39-81.Google Scholar
  62. Munhá, J. 1990. Metamorphic evolution o the South Portuguese/ Pulo do Lobo Zone. In: Dallmeyer, R.D., Martínez García, E. (eds.). Pre-Mesozoic Geology of Iberia. Berlin, Springer-Verlag, p. 363-368. Google Scholar
  63. Munhá, J., Oliveira, J.T., Ribeiro, A., Quesada, C., Kerrich, R. 1986a. Beja-Acebuches Ophiolite and geodynamic significance. Maleo, 2 (13): 31.Google Scholar
  64. Munhá, J., Barriga, F.J.A.S., Kerrich, R.  1986b. High 18O ore-forming fluids in volcanic-hosted base metal massive sulfide deposits: Geologic, 18O/16O, and D/H evidence from the Iberian Pyrite Belt, Crandon, Wisconsin, and Blue Hill, Maine. Economic Geology, 81: 530-552.Google Scholar
  65. Munhá, J., Relvas, J.M.R.S., Barriga, F.J.A.S., Conceição, P., Jorge, R.C.G.S., Mathur, R., Ruiz, J., Tassinari, C.C.G. 2005. Os isotopes systematics in the Iberian pyrite belt. In: Mao, J., Bierlein, F.P., (eds.). Mineral deposit research: Meeting the global challenge, v. 1, Proceedings of the 8th Biennial SGA Meeting, Beijing, China, August 2005: Berlin, Germany, Springer-Verlag, p.: 663-666.Google Scholar
  66. Nesbitt, R.W., Pascual, E., Fenning, C.M., Toscano, M., Sáez, R., Almodóvar, R.G. 1999. U-Pb dating of stockwork zircons from the eastern Iberian Pyrite Belt. Journal of the Geological Society London, 156: 7-10.Google Scholar
  67. Oliveira, J. T. 1983. The marine Carboniferous of South Portugal: a stratigraphic and sedimentologic approach. In: Sousa, M., Oliveira, J.T. (eds.). The Carboniferous of Portugal. Memória dos Serviços Geológicos de Portugal, 29: 3-37.Google Scholar
  68. Oliveira, J.T. 1990. Stratigraphy and syn-sedimentary tectonism in the South Portuguese Zone. In: Dallmeyer, R.D., Martínez García, E. (eds.). Pre-Mesozoic Geology of Iberia. Springer, Berlin, 334-347.Google Scholar
  69. Oliveira, J.T., Araújo, A. 1992. Paleozóico-Tectónica tardi e pós-Varisca, in: Oliveira, J.T. (coord.), Notícia Explicativa da Folha 8, Carta Geológica de Portugal, escala 1:200,000: Lisboa, Serviços Geológicos de Portugal, p. 49-50 (in Portuguese).Google Scholar
  70. Oliveira, J. T., Quesada, C. 1998. A comparison of stratigraphy, structure and paleogeography of the South Portuguese Zone and Southwest England, European Variscides. Annual Conference of the Ussher Society, Geoscience in South-west England, 141-150. Google Scholar
  71. Oliveira, J.T., Horn, M., Paproth, E. 1979. Preliminary note on the stratigraphy of the Baixo Alentejo Flysch Group, Carboniferous of Southern Portugal and on the paleogeographic development, compared to corresponding units in Northwestern Germany. Comunicações Serviços Geológicos Portugal, 65: 151–168.Google Scholar
  72. Oliveira, J. T., Carvalho, P., Pereira, Z., Pacheco, N., Korn, D. 2004. Stratigraphy of the tectonically imbricated lithological succession of the Neves-Corvo mine region, Iberian Pyrite belt. Implications for the regional basin dynamics. Mineralium Deposita, 34: 422-436.Google Scholar
  73. Oliveira, J.T., Rosa, C.J.P., Rosa, D.R.N., Pereira, Z., Matos, J.X., Inverno, C.M.C., Andersen, T. 2013. Geology of the Neves-Corvo antiform, Iberian Pyrite Belt, Portugal: new insights from physical volcanology, palynostratigraphy and isotope geochronology studies. Mineralium Deposita, 48:749-766.Google Scholar
  74. Oliveira, V., Matos, J.X., Bengala, M., Silva, N., Sousa, P. e Torres, L. 1998. Geology and geophysics as successful tools in the discovery of the Lagoa Salgada orebody (Sado Tertiary Basin - Iberian Pyrite Belt), Grândola, Portugal. Mineralium Deposita, 33: 170-187.Google Scholar
  75. Pereira, M.F., Chichorro, M., Johnston, S.T., Gutiérrez-Alonso, G., Silva, J.B., Linnemann, U., Hofmann, M., Drost, K., 2012a. The missing Rheic Ocean magmatic arcs: provenance analysis of Late Paleozoic sedimentary clastic rocks of SW Iberia. Gondwana Research, 22 (3-4): 882-891.Google Scholar
  76. Pereira, Z., Sáez, R., Pons, J., Oliveira, J., Moreno, C. 1996. Edad devónica (Struniense) de las mineralizaciones de Aznalcóllar, Faja Pirítica Ibérica, en base a palinología. Geogaceta, 20 (7): 1609-1612.Google Scholar
  77. Pereira, Z., Fernandes, P., Oliveira, J. T., 2006. Palinostratigrafia do Domínio do Pulo do Lobo, Zona Sul Portuguesa. Comunicações Geológicas, INETI, 93: 23-38.Google Scholar
  78. Pereira, Z., Matos, J., Fernandes, P., Oliveira, J.T. 2007. Devonian and Carboniferous palynostratigraphy of the South Portuguese Zone, Portugal - An overview. Comunicações Geológicas, 94: 53-79.Google Scholar
  79. Pereira, Z., Matos, J., Fernandes, P. Oliveira J.T. 2008. Palynostratigraphy and Systematic Palynology of the Devonian and Carboniferous Successions of the South Portuguese Zone, Portugal. Memória Nº 34 do INETI, 1-176.Google Scholar
  80. Pereira, Z., Matos, J., Fernandes, P., Oliveira, J.T. 2009. A new Lower Givetian age Miospores of the Phyllite Quartzite Group (S. Francisco da Serra Anticline, Iberian Pyrite Belt, Portugal). In: Abstracts CIMPFARO’09. Fernandes, P., Pereira, Z., Oliveira, J.T., Clayton, C & Wicander, R. (eds.), p. 75-78.Google Scholar
  81. Pereira, Z., Matos, J., Rosa, C., Oliveira, J.T. 2012b. Palynostratigraphic importance of the Strunian in the Iberian Pyrite Belt. Joint Meeting of the 45th Annual Meeting of American Association Stratigraphic Palynology (AASP) - The Palynological Society and Meeting of Internacional Commission of Paleozoic Microflora (Cimp), Lexington, KY, USA, Abstract Book, 42-43.Google Scholar
  82. Quesada, C. 1991. Geological constraints on the Paleozoic tectonic evolution of tectonostratigraphic terranes in the Iberian Massif. Tectonophysics, 185: 225–245.Google Scholar
  83. Quesada, C. 1996. Estructura del sector español de la Faja Pirítica: implicaciones para la exploración de yacimientos. Boletín Geológico y Minero, 107 (3-4): 265-278.Google Scholar
  84. Quesada, C. 1998. A reappraisal of the structure of the Spanish segment of the Iberian Pyrite Belt. Mineralium Deposita, 33: 31-44.Google Scholar
  85. Quesada, C., Fonseca, P. E., Munhá, J., Oliveira, J.T., Ribeiro, A. 1994. The Beja-Acebuches Ophiolite (Southern Iberia Variscan Fold Belt): Geological characterization and significance. Boletín Geológico y Minero, 105: 3-49.Google Scholar
  86. Relvas, J.M.R.S. 2000. Geology and metallogenesis at the Neves Corvo deposit, Portugal. Ph.D. Dissertation, University of Lisbon, 319 p.Google Scholar
  87. Relvas, J.M.R.S., Barriga, F.J.A.S., Bernardino, F.B.C.P., Oliveira, V.M.S., Matos, J.X. 1994. Ore zone hydrothermal alteration in drill hole IGM-LS1, at Lagoa Salgada, Grândola, Portugal: A first report on pyrophyllite in a central stockwork. Boletín Sociedad Española Mineralogía, 17-1: 157-158.Google Scholar
  88. Relvas, J.M.R.S., Tassinari, C.C.G., Munhá, J., Barriga, F.J.A.S. 2001. Multiple sources for ore-forming fluids in the Neves Corvo VHMS deposit of the Iberian Pyrite Belt (Portugal): strontium, neodymium and lead isotope evidence. Mineralium Deposita, 36: 416-427.Google Scholar
  89. Relvas, J.M.R.S., Barriga, F.J.A.S., Pinto, A., Ferreira, A., Pacheco, N., Noiva, P., Barriga, G., Baptista, R., Carvalho, D., Oliveira, V., Munhá, J., Hutchinson, R.W. 2002. The Neves-Corvo deposit, Iberian Pyrite Belt, Portugal: Impacts and future, 25 years after the discovery. Society of Economic Geology Special Publication, 9: 155-176.Google Scholar
  90. Relvas, J.M.R.S., Barriga, F.J.A.S., Ferreira, A., Noiva, P.C., Pacheco, N., Barriga, G. 2006a. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal: I. Geology, mineralogy, and geochemistry. Economic Geology, 101: 791-804.Google Scholar
  91. Relvas, J.M.R.S., Barriga, F.J.A.S., Longstaffe, F.J. 2006b. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal: II. Oxygen, hydrogen, and carbon isotopes. Economic Geology, 101: 753-790.Google Scholar
  92. Relvas, J.M.R.S., Barriga, F.A.S., Carvalho, J.R.S., Pinto, A.M.M., Matos, J.X., Rosa, C.J.P., Pereira, Z. 2011. Structure, stratigraphy and hydrothermal alteration at the Gavião orebodies, Aljustrel: reconstruction of a dismembered ore-forming system at the Iberian Pyrite Belt and implications for exploration. 11th Biennial SGA Meeting, Antofagasta, Chile, 772-774.Google Scholar
  93. Ribeiro, A. 1984. Paleozóico – Tectónica. In: Oliveira, J.T. (coord.), Notícia explicativa da Folha 7, Carta Geológica de Portugal, escala 1:200,000. Lisboa, Serviços Geológicos de Portugal, p. 28-30 (in Portuguese).Google Scholar
  94. Ribeiro, A., Quesada, C., Dallmeyer, R.D. 1990. Geodynamic evolution of the Iberian Pyrite Belt. In: Dallmeyer, R.D., Martínez García, E. (eds.). Pre-Mesozoic Geology of Iberia. Springer, Berlin, 339-409.Google Scholar
  95. Ribeiro, A.,Munhá, J.,Dias, R., Mateus, A., Pereira, E., Ribeiro, L., Fonseca , P., Araújo, A., Oliveira, J. T., Romão, J., Chaminé, H., Coke, C., Pedro, J. 2007. Geodynamic evolution of the SW Europe Variscides. Tectonics, Dec. 2007, 26(6), TC6009, (24 p.)
  96. Rodríguez, R.M., Díez-Montes, A., Leyva, F., Matas, J., Almarza, J., Donaire, M. 2002. Datación palinoestratigráfica del volcanismo en la sección de la Ribera del Jarama (Faja Pirítica Ibérica, Zona Surportuguesa). Geogaceta, 32: 247-250. Google Scholar
  97. Rosa, C.J.P. 2007. Facies architecture of the Volcanic Sedimentary Complex of the Iberian Pyrite Belt, Portugal and Spain. PhD thesis, University of Tasmania, 357 p.Google Scholar
  98. Rosa, D., Inverno, C., Oliveira, V., Rosa, C., 2006. Geochemistry and geothermometry of volcanic rocks from Serra Branca, Iberian Pyrite Belt, Portugal. Gondwana Research, 10: 328–339.Google Scholar
  99. Rosa, C.J.P., McPhie, J., Relvas, J., Pereira, Z., Oliveira, T., Pacheco, N.  2008. Volcanic setting of the giant Neves Corvo massive sulfide deposit, Iberian Pyrite Belt, Portugal. Mineralium Deposita, 43: 449-466. Google Scholar
  100. Rosa, C., McPhie, J., Relvas, J., 2009. The Felsic Volcanic Centres of Neves Corvo and Lousal Massive Sulfide Deposits in the Iberian Pyrite Belt. In: Williams, P.J. et al. (eds.), 10th Biennial SGA Meeting, Smart Science for Exploration and Mining, Townsville, Australia, Economic Geology Reserch Unit, James Cook University, vol. 1, 484–486.Google Scholar
  101. Rosa, C.J.P., McPhie, J., Relvas, J. 2010a. Type of volcanoes hosting the massive sulfide deposits of the Iberian Pyrite Belt. Journal Volcanology Geothermal Research, 194: 107-126.Google Scholar
  102. Rosa, C., Rosa, D., Matos, J., Relvas, J, 2010b. The volcanic-sedimentary sequence of the Lousal deposit, Iberian Pyrite Belt (Portugal). Geophysical Research Abstracts, EGU General Assembly, Vol. 12, EGU2010- 11000.Google Scholar
  103. Rosa C, McPhie J, Relvas J, (2011) Sediment-matrix igneous breccias at the top contacts of felsic units in the IPB: implications for VHMS exploration. 11th SGA Biennial Meeting: Let´s Talk Ore Deposits. Antofagasta, Chile. s2.6.5, 754-756.Google Scholar
  104. Routhier, P., Aye, F., Boyer, C., Lécolle, M., Molière, P., Picot, P., Roger, G. 1980. Le ceinture sud-ibérique à amas sulfurés dans sa partie espagnole médiane. Mémoire du BRGM 94, 265 pp.Google Scholar
  105. Sáez, R., Almodóvar, G.R., Pascual, E. 1996. Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geology Reviews, 11: 429-451.Google Scholar
  106. Sáez, R., Pascual, E., Toscano, M., Almodóvar, G.R. 1999. The Iberian type of volcano-sedimentary massive sulphide deposits. Mineralium Deposita, 34: 549-570.Google Scholar
  107. Sánchez-España, J., Velasco, F., Boyce, A.J., Fallick, A.E. 2003. Source and evolution of ore-forming hydrothermal fluids in the northern Iberian Pyrite Belt massive sulphide deposits (SW Spain): evidence from fluid inclusions and stable isotopes. Mineralium Deposita, 38: 519-537.Google Scholar
  108. Schermerhorn, L.J.G., 1971. An outline stratigraphy of the Iberian Pyrite Belt. Boletin Geologico y Minero, 82 (3/4): 239-268.Google Scholar
  109. Schermerhorn, L.J.G., Zbyszewski, G., Veiga Ferreira, O., 1987, Notícia Explicativa da Folha 42-D (Aljustrel), Carta Geológica de Portugal, escala 1:50,000: Lisboa, Serviços Geológicos de Portugal, 55 p. (in Portuguese).Google Scholar
  110. Schütz, W., Ebneth, J., Meyer, K.D. 1987. Trondhjemites, tonalites and diorites in the South Portuguese Zone and their relations to the vulcanites and mineral deposits of the Iberian Pyrite Belt. Geologische Rundschau, 76 (1): 201-212.Google Scholar
  111. Silva, J.B., Oliveira, J.T., Ribeiro, A. 1990. South Portuguese Zone. Part VI. Structural outline. In: Dallmeyer, R.D., Martínez García, E. (eds.). Pre-Mesozoic Geology of Iberia. Springer, Berlin, 348-362.Google Scholar
  112. Simancas, J.F. 1983. Geología de la extremidad oriental de la Zona Sudportuguesa. Unpublished Doctoral Thesis, Univ. Granada, España, 439 pp.Google Scholar
  113. Simancas, J.F., Carbonell, R., González Lodeiro, F., Pérez Estaún, A., Juhlin, C., Ayarza, P., Kashubin, A., Azor, A., Martínez Poyatos, D., Almodóvar, G.R., Pascual, E., R. Sáez, R., Expósito, I. 2003. Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS). Tectonics, 22 (6), 1062, 1-11 – 1-19.Google Scholar
  114. Solomon, M., Tornos, F., Gaspar, O.C. 2002. A possible explanation for many of the unusual features of the massive sulfide deposits of the Iberian Pyrite Belt. Geology, 30: 87–90.Google Scholar
  115. Solomon, M., Tornos, F., Large, R.R., Badham, J.N.P., Both, R.A., Khin Zaw. 2004. Zn-Pb-Cu volcanic-hosted massive sulfide deposits: Criteria for distinguishing brine pool- from black smoker-type sulfide deposition. Ore Geology Reviews, 25: 259-283.Google Scholar
  116. Soriano C, Martí, J. 1999. Facies Analysis of Volcano-Sedimentary Successions Hosting Massive Sulfide Deposits in the Iberian Pyrite Belt, Spain. Economic Geology, 94: 867-882.Google Scholar
  117. Strauss, G.K., Madel, J., Fernández Alonso, F. 1977. Exploration practice for strata-bound volcanogenic sulphide deposits in the Spanish-Portuguese Pyrite Belt: Geology, geophysics, and geochemistry. In: Klemm, D.D., Schneider, H.J. (eds.). Time and strata-bound ore deposits. Berlin, Springer-Verlag, p. 55-93.Google Scholar
  118. Strauss, G.K., Beck, J.S. 1990. Gold mineralizations in the SW Iberian Pyrite Belt. Mineralium Deposita, 25: 237-245.Google Scholar
  119. Thiéblemont, D., Pascual, E., Stein, G. 1998. Magmatism in the Iberian Pyrite Belt: petrological constraints on a metallogenetic model. Mineralium Deposita, 33: 98-110.Google Scholar
  120. Tornos, F. 2006. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geology Reviews, 28: 259-307.Google Scholar
  121. Tornos, F., Heinrich, C.A. 2008. Shale basins, sulfur-deficient ore brines, and the formation of exhalative base metal deposits. Chemical Geology, 247: 195-207.Google Scholar
  122. Tornos, F., Spiro, B. 1999. The genesis of the shale-hosted massive sulphides in the Iberian Pyrite Belt. In: Stanley, C.J. et al. (eds.). Mineral deposits: Processes to processing. Rotterdam, Balkema, p. 605-608.Google Scholar
  123. Tornos, F., González-Clavijo, E., Spiro, B.F. 1998. The Filón Norte orebody (Tharsis, Iberian Pyrite Belt): a proximal low-temperature shale-hosted massive sulphide in a thin-skinned tectonic belt. Mineralium Deposita, 33: 150-169.Google Scholar
  124. Tornos, F., Barriga, F., Marcoux, E., Pascual, E., Pons, J.M., Relvas, J., Velasco, F. 2000. The Iberian Pyrite Belt, in Large, R., Blundell, D. (eds.). Database on global VMS districts: CODES-GEODE, p. 19-52.Google Scholar
  125. Tornos, F., Casquet, C., Relvas, J.M.R.S. 2005. Transpressional tectonics, lower crust decoupling and intrusion of deep mafic sills: a model for the unusual metallogenesis of SW Iberia. Ore Geology Reviews, 27: 133-163.Google Scholar
  126. Tornos, F., Solomon, M., Conde, C., Spiro, B. F. 2008. Formation of the Tharsis massive sulfide deposit, Iberian Pyrite Belt: Geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool. Economic Geology, 103: 185-214.Google Scholar
  127. Toscano, M., Sáez, R., Almodóvar, G.R. 1997. Multi-scale fluid evolution in the Masa Valverde (Iberian Pyrite Belt): Evidence from fluid inclusions. [abs.]: Society of Economic Geologists Neves Corvo Field Conference, Abstracts and Program, p. 101.Google Scholar
  128. Valenzuela, A., Donaire, T., Pin, C., Toscano, M., Hamilton, M., Pascual, E. 2011. Geochemistry and U-Pb Dating of felsic volcanic rocks in the Río Tinto-Nerva unit, Iberian Pyrite Belt, Spain: crustal thinning, progressive crustal melting and massive sulphide genesis.Journal of the Geological Society, 168: 717-731.Google Scholar
  129. Velasco, F., Sánchez-España, J., Boyce, A.J., Fallick, A.E., Sáez, R., Almodóvar, G.R. 1998. A new sulphur isotopic study of some Iberian Pyrite Belt deposits: evidence of a textural control on sulphur isotope composition. Mineralium Deposita, 34: 4-18.Google Scholar
  130. Yamamoto, M., Kase, K., Carvalho, D., Nakamura, T., Mitsuno, C. 1993. Ore mineralogy and sulfur isotopes of the volcanogenic massive sulfide deposits in the Iberian Pyrite Belt. Resource Geology Special Issue, 15: 67-80.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • C. Inverno
    • 1
    Email author
  • A. Díez-Montes
    • 2
  • C. Rosa
    • 3
  • J. García-Crespo
    • 2
  • J. Matos
    • 4
  • J. L. García-Lobón
    • 2
  • J. Carvalho
    • 1
  • F. Bellido
    • 2
  • J. M. Castello-Branco
    • 5
  • C. Ayala
    • 2
    • 6
  • M. J. Batista
    • 1
  • F. Rubio
    • 2
  • I. Granado
    • 1
  • F. Tornos
    • 7
  • J. T. Oliveira
    • 1
  • C. Rey
    • 2
  • Vítor Araújo
    • 8
  • T. Sánchez-García
    • 2
  • Z. Pereira
    • 9
  • P. Represas
    • 1
  • A. R. Solá
    • 1
  • P. Sousa
    • 4
  1. 1.Laboratório Nacional de Energia e Geologia (LNEG)AlfragidePortugal
  2. 2.Instituto Geológico y Minero de España (IGME)MadridSpain
  3. 3.Empresa de Desenvolvimento Mineiro SA (EDM)LisboaPortugal
  4. 4.LNEGBejaPortugal
  5. 5.Geology and Geotechnics Consultores Lda.PortoPortugal
  6. 6.Institute of Earth Sciences Jaume Almera (CSIC)BarcelonaSpain
  7. 7.CSIC-INTATorrejón de ArdozSpain
  8. 8.VizelaPortugal
  9. 9.LNEGS. Mamede InfestaPortugal

Personalised recommendations