Skip to main content

Urban Logistics: Multi-modal Transportation Network Design Accounting for Stochastic Passenger Demand and Freight Logistics

  • Chapter
  • First Online:
Sustainable Logistics and Supply Chains

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

  • 3109 Accesses

Abstract

In this chapter, we present a bi-level optimization model by considering multiple transportation modes, stochastic passenger travel demand and freight logistics. Passenger travel demand can follow a general probability distribution where its mean and variance are function of the population in the origin and destination areas. The problem is formulated as a bi-level optimization problem. In the lower level, transportation design problem is formulated to minimize traveler costs and in the upper level we consider minimizing carbon monoxide emission and minimizing probability of traffic congestion. The two-stage model is formulated as a single stage model by considering optimality condition of lower level problem as a set of constraints in the upper level model. The formulated single stage model is a Mixed-Integer Non-linear Programming (MINLP) problem. In this chapter, a stochastic multi-modal, bi-level optimization model is presented for passenger and freight transportation problem in urban regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ban JX, Liu HX, Ferris MC, Ran B (2006) A general MPCC model and its solution algorithm for continuous network design problem. Math Comput Modell 43:493–505. doi:10.1016/j.mcm.2005.11.001

    Article  Google Scholar 

  • Boyce DE, Janson BN (1980) A discrete transportation network design problem with combined trip distribution and assignment. Transp Res B Methodol 14:147–154. doi:10.1016/0191-2615(80)90040-5

    Article  Google Scholar 

  • Chen A, Subprasom K, Ji Z (2006) A simulation-based multi-objective genetic algorithm (SMOGA) procedure for BOT network design problem. Optim Eng 7:225–247. doi:10.1007/s11081-006-9970-y

    Article  Google Scholar 

  • Chen A, Kim J, Lee S, Kim Y (2010a) Stochastic multi-objective models for network design problem. Expert Syst Appl 37:1608–1619. doi:10.1016/j.eswa.2009.06.048

    Article  Google Scholar 

  • Chen A, Pravinvongvuth S, Chootinan P (2010b) Scenario-based multi-objective AVI reader location models under different travel demand patterns. Transportmetrica 6:53–78. doi:10.1080/18128600902929617

    Article  Google Scholar 

  • Chiou S-W (2009) A subgradient optimization model for continuous road network design problem. Appl Math Model 33:1386–1396. doi:10.1016/j.apm.2008.01.020

    Article  Google Scholar 

  • Davis GA (1994) Exact local solution of the continuous network design problem via stochastic user equilibrium assignment. Transp Res B Methodol 28:61–75. doi:10.1016/0191-2615(94)90031-0

    Article  Google Scholar 

  • Davis SC, Diegel SW, Boundy RG (2012) Transportation energy data book: edition 30–2011. Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  • Dempe S (2002) Foundations of bilevel programming. Springer, Boston, MA

    Google Scholar 

  • Duran MA, Grossmann IE (1986) An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program 36:307–339. doi:10.1007/BF02592064

    Article  Google Scholar 

  • Farahani RZ, Miandoabchi E, Szeto WY, Rashidi H (2013) A review of urban transportation network design problems. Eur J Oper Res 229:281–302. doi:10.1016/j.ejor.2013.01.001

    Article  Google Scholar 

  • Farvaresh H, Sepehri MM (2012) A Branch and bound algorithm for bi-level discrete network design problem. Networks Spat Econ 13:67–106. doi:10.1007/s11067-012-9173-3

    Article  Google Scholar 

  • Federal Highway Administration (FHWA) (2006) Multi-pollutant emissions benefits of transportation strategies. http://www.fhwa.dot.gov/environment/air_quality/publications/fact_book/index.cfm. Accessed 22 May 2014

  • Friesz TL, Anandalingam G, Mehta NJ et al (1993) The multiobjective equilibrium network design problem revisited: a simulated annealing approach. Eur J Oper Res 65:44–57. doi:10.1016/0377-2217(93)90143-B

    Article  Google Scholar 

  • Genz A (1992) Numerical computation of multivariate normal probabilities. J Comput Graph Stat 1:141–149. doi:10.1080/10618600.1992.10477010

    Article  Google Scholar 

  • Geoffrion AM (1972) Generalized benders decomposition. J Optim Theory Appl 10:237–260. doi:10.1007/BF00934810

    Article  Google Scholar 

  • Huang K, Zhang J, He M, Liao W (2010) An optimal model and solution algorithm of urban traffic network considering exhaust emission control. In: ICLEM, pp 526–532

    Google Scholar 

  • Kim BJ, Kim W, Song BH (2007) Sequencing and scheduling highway network expansion using a discrete network design model. Ann Reg Sci 42:621–642. doi:10.1007/s00168-007-0170-2

    Article  Google Scholar 

  • Kitamura R, Susilo YO (2005) Is travel demand insatiable? A study of changes in structural relationships underlying travel. Transportmetrica 1:23–45. doi:10.1080/18128600508685640

    Article  Google Scholar 

  • Leblanc LJ (1975) An algorithm for the discrete network design problem. Transp Sci 9:183–199

    Article  Google Scholar 

  • Li Z-C, Lam WHK, Wong SC, Sumalee A (2012) Environmentally sustainable toll design for congested road networks with uncertain demand. Int J Sustain Transp 6:127–155. doi:10.1080/15568318.2011.570101

    Article  Google Scholar 

  • Lin D-Y, Xie C (2010) The pareto-optimal solution set of the equilibrium network design problem with multiple commensurate objectives. Networks Spat Econ 11:727–751. doi:10.1007/s11067-010-9146-3

    Article  Google Scholar 

  • Lo HK, Szeto WY (2009) Time-dependent transport network design under cost-recovery. Transp Res B Methodol 43:142–158. doi:10.1016/j.trb.2008.06.005

    Article  Google Scholar 

  • Long J, Gao Z, Zhang H, Szeto WY (2010) A turning restriction design problem in urban road networks. Eur J Oper Res 206:569–578. doi:10.1016/j.ejor.2010.03.013

    Article  Google Scholar 

  • Ma X, Lo HK (2012) Modeling transport management and land use over time. Transp Res B Methodol 46:687–709. doi:10.1016/j.trb.2012.01.010

    Article  Google Scholar 

  • Marcotte P (1986) Network design problem with congestion effects: a case of bilevel programming. Math Program 34:142–162. doi:10.1007/BF01580580

    Article  Google Scholar 

  • Meng Q, Yang H, Bell MGH (2001) An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem. Transp Res B Methodol 35:83–105. doi:10.1016/S0191-2615(00)00016-3

    Article  Google Scholar 

  • Miandoabchi E, Farahani RZ, Dullaert W, Szeto WY (2011a) Hybrid evolutionary metaheuristics for concurrent multi-objective design of urban road and public transit networks. Networks Spat Econ 12:441–480. doi:10.1007/s11067-011-9163-x

    Article  Google Scholar 

  • Miandoabchi E, Farahani RZ, Szeto WY (2011b) Bi-objective bimodal urban road network design using hybrid metaheuristics. Cent Eur J Oper Res 20:583–621. doi:10.1007/s10100-011-0189-4

    Article  Google Scholar 

  • Miandoabchi E, Daneshzand F, Szeto WY, Zanjirani Farahani R (2013) Multi-objective discrete urban road network design. Comput Oper Res 40:2429–2449. doi:10.1016/j.cor.2013.03.016

    Article  Google Scholar 

  • Nabar S, Schrage L (1991) Modeling and solving nonlinear integer programming problems. Annual AIChE meeting, Chicago

    Google Scholar 

  • Ng M, Lo HK (2013) Regional air quality conformity in transportation networks with stochastic dependencies: a theoretical copula-based model. Networks Spat Econ 13:373–397. doi:10.1007/s11067-013-9185-7

    Article  Google Scholar 

  • Qiu Y, Chen S (2007) Bi-level programming for continuous network design of comprehensive transportation system based on external optimization. In: IEEE international conference on grey systems and ıntelligent services. IEEE, Nanjing, pp 1186–1190

    Google Scholar 

  • Shahraki N, Turkay M (2014) Analysis of interaction among land use, transportation network and air pollution using stochastic nonlinear programming. Int J Environ Sci Technol 11(8):2201–2216. doi:10.1007/s13762-014-0566-3

    Article  Google Scholar 

  • Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Sinha KC, Labi S (2007) Transportation decision making: principles of project evaluation and programming. Wiley, New York, pp 65–93

    Book  Google Scholar 

  • Szeto WY, Jiang Y, Wang DZW, Sumalee A (2013) A sustainable road network design problem with land use transportation ınteraction over time. Netw Spat Econ. doi: 10.1007/s11067-013-9191-9

    Article  Google Scholar 

  • Taniguchi E, Thompson RG, Yamada T (2014) Recent trends and ınnovations in modelling city logistics. Proc Soc Behav Sci 125:4–14

    Article  Google Scholar 

  • Uchida K, Sumalee A, Watling D, Connors R (2006) A study on network design problems for multi-modal networks by probit-based stochastic user equilibrium. Netw Spat Econ 7:213–240. doi:10.1007/s11067-006-9010-7

    Article  Google Scholar 

  • Ukkusuri SV, Mathew TV, Waller ST (2007) Robust transportation network design under demand uncertainty. Comput Aided Civ Infrastruct Eng 22:6–18. doi:10.1111/j.1467-8667.2006.00465.x

    Article  Google Scholar 

  • US Environmental Protection Agency (EPA) (2010) Carbon monoxide ımplementation. EPA, Washington, DC

    Google Scholar 

  • Yafeng Y, Huapu L (1999) Traffic equilibrium problems with environmental concerns. J East Asia Soc Transp Stud 3(6):195

    Google Scholar 

  • Yang H, Xu W, He B, Meng Q (2010) Road pricing for congestion control with unknown demand and cost functions. Transp Res Part C Emerg Technol 18:157–175. doi:10.1016/j.trc.2009.05.009

    Article  Google Scholar 

  • Yim KKW, Wong SC, Chen A et al (2011) A reliability-based land use and transportation optimization model. Transp Res Part C Emerg Technol 19:351–362. doi:10.1016/j.trc.2010.05.019

    Article  Google Scholar 

  • Yin Y, Lawphongpanich S (2006) Internalizing emission externality on road networks. Transp Res D Transp Environ 11:292–301. doi:10.1016/j.trd.2006.05.003

    Article  Google Scholar 

  • Zhong R, Sumalee A, Maruyama T (2012) Dynamic marginal cost, access control, and pollution charge: a comparison of bottleneck and whole link models. J Adv Transp 46(3):191–221. doi:10.1002/atr

    Article  Google Scholar 

  • Zhou S, Yan X, Wu C (2008) Optimization model for traffic signal control with environmental objectives. In: Fourth ınternational conference on natural computation. IEEE, pp 530–534

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Türkay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahraki, N., Türkay, M. (2016). Urban Logistics: Multi-modal Transportation Network Design Accounting for Stochastic Passenger Demand and Freight Logistics. In: Lu, M., De Bock, J. (eds) Sustainable Logistics and Supply Chains. Contributions to Management Science. Springer, Cham. https://doi.org/10.1007/978-3-319-17419-8_7

Download citation

Publish with us

Policies and ethics