Advertisement

Manipulation of Metal Nanoparticles on Insulating Surfaces

  • Clemens Barth
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

In this chapter, it will be shown that with nanometer precision metal nanoparticles can be laterally moved on a surface of an insulator by using the AFM tip. After a general description of requirements needed for lateral manipulation experiments, the surface morphology and lateral manipulation experiments are discussed for the particular case gold nanoparticles on NaCl(001). It will be shown that defects of the NaCl(001) surface underneath the nanoparticles have a strong influence on the manipulation characteristics. At the end, promising perspectives in the field of defect-mediated manipulation of nanoparticles are described.

Keywords

Gold metal nanoparticles Insulating surfaces NaCl(001) Vacancies Lateral manipulation Noncontact atomic force microscopy (nc-AFM) Constant height mode imaging Kelvin probe force microscopy Heterogeneous catalysis Nanotribology Nanofriction 

Notes

Acknowledgments

The author is particularly grateful for a part of the experimental work done by G. Cabailh. He expresses his very great appreciation to T. Hyninnen and A.S. Foster for the numerical simulations and fruitful collaboration they have had together in the recent past. Stimulating discussions with C.R. Henry and S. Gauthier are also greatly appreciated. The author acknowledges the European Science Foundation for financial support through the FANAS project NOMCIS and the French agency for Research (Agence Nationale pour la Recherche, ANR) for financial support through the programs CANA and MISS.

References

  1. 1.
    Albrecht, T.R., Grütter, P., Horne, D., Rugar, D.: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668 (1991)Google Scholar
  2. 2.
    Morita, S., Wiesendanger, R., Meyer, E.: Noncontact Atomic Force Microscopy, vol. 1. Springer, Berlin (2002)Google Scholar
  3. 3.
    Morita, S., Giessibl, F., Wiesendanger, R.: Noncontact Atomic Force Microscopy, vol. 2. Springer, Berlin (2009)Google Scholar
  4. 4.
    Barth, C., Foster, A.S., Henry, C.R., Shluger, A.L.: Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv. Mater. 23, 477–501 (2011)Google Scholar
  5. 5.
    Giessibl, F.J., Hembacher, S., Bielefeldt, H., Mannhart, J.: Subatomic features on the silicon (111)-(7 × 7) surface observed by atomic force microscopy. Science 289, 422 (2000)Google Scholar
  6. 6.
    Gross, L., Mohn, F., Moll, N., Liljeroth, P., Meyer, G.: The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009)Google Scholar
  7. 7.
    Gross, L., Mohn, F., Moll, N., Meyer, G., Ebel, R., Abdel-Mageed, W.M., Jaspars, M.: Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2(10), 821–825 (2010)Google Scholar
  8. 8.
    Guillermet, O., Gauthier, S., Joachim, C., de Mendoza, P., Lauterbach, T., Echavarren, A.: STM and AFM high resolution intramolecular imaging of a single decastarphene molecule. Chem. Phys. Lett. 511, 482–485 (2011)Google Scholar
  9. 9.
    Gross, L., Mohn, F., Moll, N., Schuler, B., Criado, A., Guitián, E., Peña, D., Gourdon, A., Meyer, G.: Bond-order discrimination by atomic force microscopy. Science 337(6100), 1326–1329 (2012)Google Scholar
  10. 10.
    Wiesendanger, R., Schwarz, A.: Magnetic sensitive force microscopy. Nano Today 3, 28–39 (2008)Google Scholar
  11. 11.
    Girard, P.: Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology 12, 485–490 (2001)Google Scholar
  12. 12.
    Melitz, W., Shen, J., Kummel, A.C., Lee, S.: Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011)Google Scholar
  13. 13.
    Sadewasser, S. Glatzel, T.: Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces. In: Ertl, G., Luth, H., Mills, D. (eds.) Surface Science, Ist edn. Springer, Berlin (2012)Google Scholar
  14. 14.
    Ternes, M., Lutz, C.P., Hirjibehedin, C.F., Giessibl, F.J., Heinrich, A.J.: The force needed to move an atom on a surface. Science 319, 1066 (2008)Google Scholar
  15. 15.
    Stomp, R., Miyahara, Y., Schaer, S., Sun, Q., Guo, H., Grutter, P., Studenikin, S., Poole, P., Sachrajda, A.: Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 94, 056802 (2005)Google Scholar
  16. 16.
    Cockins, L., Miyahara, Y., Bennett, S.D., Clerk, A.A., Studenikin, S., Poole, P., Sachrajda, A., Grutter, P.: Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy. Proc. Natl. Acad. Sci. 107(21), 9496 (2010)Google Scholar
  17. 17.
    Tekiel, A., Miyahara, Y., Topple, J.M., Grütter, P.: Room-temperature single-electron charging detected by electrostatic force microscopy. ACS Nano 7, 4683–4690 (2013)Google Scholar
  18. 18.
    Gross, L., Mohn, F., Liljeroth, P., Repp, J., Giessibl, F.J., Meyer, G.: Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428 (2009)Google Scholar
  19. 19.
    Schirmeisen, A., Schwarz, U.D.: Measuring the friction of nanoparticles: a new route towards a better understanding of nanoscale friction. Chem. Phys. Chem. 10(14), 2373–2382 (2009)Google Scholar
  20. 20.
    Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A 31(3), 030801 (2013)Google Scholar
  21. 21.
    Ritter, C., Heyde, M., Stegemann, B., Rademann, K., Schwarz, U.D.: Contact-area dependence of frictional forces: moving adsorbed antimony nanoparticles. Phys. Rev. B 71(8), 085405 (2005)Google Scholar
  22. 22.
    Dietzel, D., Ritter, C., Mönninghoff, T., Fuchs, H., Schirmeisen, A., Schwarz, U.D.: Frictional duality observed during nanoparticle sliding. Phys. Rev. Lett. 101, 125505 (2008)Google Scholar
  23. 23.
    Dietzel, D., Mönninghoff, T., Herding, C., Feldmann, M., Fuchs, H., Stegemann, B., Ritter, C., Schwarz, U.D., Schirmeisen, A.: Frictional duality of metallic nanoparticles: influence of particle morphology, orientation, and air exposure. Phys. Rev. B 82(3), 035401 (2010)Google Scholar
  24. 24.
    Brndiar, J., Turanskỳ, R., Dietzel, D., Schirmeisen, A., Štich, I.: Understanding frictional duality and bi-duality: Sb-nanoparticles on HOPG. Nanotechnology 22(8), 085704 (2011)Google Scholar
  25. 25.
    Mougin, K., Gnecco, E., Rao, A., Cuberes, M.T., Jayaraman, S., McFarland, E.W., Haidara, H., Meyers, E.: Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (Vacuum versus ambient atmosphere). Langmuir 24, 1577–1581 (2008)Google Scholar
  26. 26.
    Darwich, S., Mougin, K., Rao, A., Gnecco, E., Jayaraman, S., Haidara, H.: Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions. Beilstein J. Nanotechnol. 2(1), 85–98 (2011)Google Scholar
  27. 27.
    Tripathi, M., Paolicelli, G., D’Addato, S., Valeri, S.: Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures. Nanotechnology 23(24), 245706 (2012)Google Scholar
  28. 28.
    Hirano, M., Shinjo, K.: Atomistic locking and friction. Phys. Rev. B 41, 11837–11851 (1990)Google Scholar
  29. 29.
    Müser, M.H.: Structural lubricity: role of dimension and symmetry. EPL (Europhys. Lett.) 66(1), 97–103 (2004)Google Scholar
  30. 30.
    Henry, C.R.: Surface studies of supported model catalysts. Surf. Sci. Rep. 31, 231–325 (1998)Google Scholar
  31. 31.
    Libuda, J., Freund, H.-J.: Molecular beam experiments on model catalysts. Surf. Sci. Rep. 57, 157–298 (2005)Google Scholar
  32. 32.
    Heiz, U., Landman, U.: Nanocatalysis. Springer, Berlin (2007)Google Scholar
  33. 33.
    Freund, H.-J.: Model studies in heterogeneous catalysis. Chem. A Eur. J. 16(31), 9384–9397 (2010)Google Scholar
  34. 34.
    Hynninen, T., Cabailh, G., Foster, A.S., Barth, C.: Defect mediated manipulation of nanoclusters on an insulator. Sci. Rep. 3, 1270 (2013)Google Scholar
  35. 35.
    Hayes, W., Stoneham, A.M.: Defects and Defect Processes in Nonmetallic Solids. Wiley-Interscience, New York (1985)Google Scholar
  36. 36.
    Seitz, F.: Color centers in alkali halide crystals. Rev. Mod. Phys. 18, 384–408 (1946)Google Scholar
  37. 37.
    Seitz, F.: Color centers in alkali halide crystals. II. Rev. Mod. Phys. 26, 7–94 (1954)Google Scholar
  38. 38.
    Bethge, H.: Electron microscopic studies of surface structures and some relations to surface phenomena. Surf. Sci. 3, 33–41 (1964)Google Scholar
  39. 39.
    Bethge, H., Keller, K.W.: Evaporation rate of NaCl in a vacuum. J. Cryst. Growth 23, 105–112 (1974)Google Scholar
  40. 40.
    Höche, H., Bethge, H.: Morphological changes of the Monoatomic (100) NaCl cleavage structure due to edge self-diffusion: 1. Exp. J. Cryst. Growth 33, 246–254 (1976)Google Scholar
  41. 41.
    Bethge, H., Heydenreich, J.: Elektronenmikroskopie in der Festkörperphysik. Springer, Berlin (1982)Google Scholar
  42. 42.
    Bassett, G.A., Yacamán, M.J.: Surface aggregation of impurity in manganese-doped alkali halide crystals. Thin Solid Films 31, 375–384 (1976)Google Scholar
  43. 43.
    Yacamán, M.J., Hirth, J.P.: Effects of surface imperfections on the nucleation of gold on sodium chloride. Thin Solid Films 38, 215–223 (1976)Google Scholar
  44. 44.
    Grange, G.: Formation of the suzuki phase on the solid-liquid interface of czochralski grown crystals. Surf. Sci. 105, 265–274 (1981)Google Scholar
  45. 45.
    Bassett, G.A.: A new technique for decoration of cleavage and slip steps on ionic crystal surfaces. Philos. Mag. 3, 1042–1045 (1958)Google Scholar
  46. 46.
    Bammerlin, M., Lüthi, R., Meyer, E., Baratoff, A., Lü, J., Guggisberg, M., Loppacher, C., Gerber, C., Güntherodt, H.-J.: Dynamic SFM with true atomic resolution on alkali halide surfaces. Appl. Phys. A 66, S293–S294 (1998)Google Scholar
  47. 47.
    Bennewitz, R., Schär, S., Gnecco, E., Pfeiffer, O., Bammerlin, M., Meyer, E.: Atomic structure of alkali halide surfaces. Appl. Phys. A 78, 837–841 (2004)Google Scholar
  48. 48.
    Hoffmann, R., Kantorovich, L.N., Baratoff, A., Hug, H.-J., Güntherodt, H.-J.: Sublattice identification in scanning force microscopy on alkali halide surfaces. Phys. Rev. Lett. 92, 146103 (2004)Google Scholar
  49. 49.
    Burke, S.A., Mativetsky, J.M., Hoffmann, R., Grütter, P.: Nucleation and submonolayer growth of C60 on KBr. Phys. Rev. Lett. 94, 96102 (2005)Google Scholar
  50. 50.
    Schirmeisen, A., Weiner, D., Fuchs, H.: Single-atom contact mechanics: from atomic scale energy barrier to mechanical relaxation hysteresis. Phys. Rev. Lett. 97(13), 136101 (2006)Google Scholar
  51. 51.
    Barth, C., Henry, C.R.: Imaging suzuki precipitates on NaCl: Mg2 (001) by scanning force microscopy. Phys. Rev. Lett. 100, 096101 (2008)Google Scholar
  52. 52.
    Ruschmeier, K., Schirmeisen, A., Hoffmann, R.: Atomic-scale force-vector fields. Phys. Rev. Lett. 101(15), 1–4 (2008)Google Scholar
  53. 53.
    Cerda, M.A., Abad, J., Madgavkar, A., Martrou, D., Gauthier, S.: Step-induced tip polarity reversal investigated by dynamic force microscopy on KBr(001). Nanotechnology 19, 045503 (2008)Google Scholar
  54. 54.
    Foster, A.S., Barth, C., Henry, C.R.: Chemical identification of ions in doped NaCl by scanning force microscopy. Phys. Rev. Lett. 102, 256103 (2009)Google Scholar
  55. 55.
    Barth, C., Henry, C.R.: Surface double layer on (001) surfaces of alkali halide crystals: a scanning force microscopy study. Phys. Rev. Lett. 98, 136804 (2007)Google Scholar
  56. 56.
    Egberts, P., Filleter, T., Bennewitz, R.: A kelvin probe force microscopy of charged indentation-induced dislocation structures in KBr. Nanotechnology 20, 264005 (2009)Google Scholar
  57. 57.
    Hinaut, A.: Etude par Microscopie a Force Atomique en Mode Non Contact at par Microscopie a Sonde de Kelvin de Derives du Triphenylene sur KBr(001) dans l’ultra-vide. PhD thesis, Universite Toulouse III Paul Sabatier (2012)Google Scholar
  58. 58.
    Filleter, T., Maier, S., Bennewitz, R.: Atomic-scale yield and dislocation nucleation in KBr. Phys. Rev. B 73(15), 1–10 (2006)Google Scholar
  59. 59.
    Pakarinen, O.H., Mativetsky, J.M., Gulans, A., Puska, M.J., Foster, A.S., Grütter, P.: Role of van der Waals forces in the adsorption and diffusion of organic molecules on an insulating surface. Phys. Rev. B 80, 85401 (2009)Google Scholar
  60. 60.
    Such, B., Trevethan, T., Glatzel, T., Kawai, S., Zimmerli, L., Meyer, E., Shluger, A.L., Amijs, C.H.M., de Mendoza, P., Echavarren, A.M.: Functionalized truxenes: adsorption and diffusion of single molecules on the KBr(001) surface. ACS Nano 4, 3429–3439 (2010)Google Scholar
  61. 61.
    Nony, L., Gnecco, E., Baratoff, A., Alkauskas, A., Bennewitz, R., Pfeiffer, O., Maier, S., Wetzel, A., Meyer, E., Gerber, Ch.: Observation of individual molecules trapped on a nanostructured insulator. Nano Lett. 4, 2185–2189 (2004)Google Scholar
  62. 62.
    Kunstmann, T., Schlarb, A., Fendrich, M., Wagner, T., Möller, R., Hoffmann, R.: Dynamic force microscopy study of 3,4,9,10-perylenetetracarboxylic dianhydride on KBr (001). Phys. Rev. B 71, 121403 (2005)Google Scholar
  63. 63.
    Dienel, T., Loppacher, C., Mannsfeld, S.C.B., Forker, R., Fritz, T.: Growth-mode-induced narrowing of optical spectra of an organic adlayer. Adv. Mater. 20, 959–963 (2008)Google Scholar
  64. 64.
    Burke, S.A., Ji, W., Mativetsky, J.M., Topple, J.M., Fostner, S., Gao, H.-J., Guo, H., Grütter, P.: Strain induced dewetting of a molecular system: bimodal growth of PTCDA on NaCl. Phys. Rev. Lett. 100, 186104 (2008)Google Scholar
  65. 65.
    Burke, S.A., LeDue, J.M., Topple, J.M., Fostner, Sh, Grütter, P.: Relating the functional properties of an organic semiconductor to molecular structure by nc-AFM. Adv. Mater. 21(20), 2029–2033 (2009)Google Scholar
  66. 66.
    Hinaut, A., Pujol, A., Chaumeton, F., Martrou, D., Gourdon, A., Gauthier, S.: An NC-AFM and KPFM study of the adsorption of a triphenylene derivative on KBr(001). Beilstein J. Nanotechnol. 3, 221–229 (2012)Google Scholar
  67. 67.
    Nony, L., Bocquet, F., Para, F., Chérioux, F., Duverger, E., Palmino, F., Luzet, V., Loppacher, C.: Dipole-driven self-organization of zwitterionic molecules on alkali halide surfaces. Beilstein J. Nanotechnol. 3, 285–293 (2012)Google Scholar
  68. 68.
    Bocquet, F., Nony, L., Mannsfeld, S.C.B., Oison, V., Pawlak, R., Porte, L., Loppacher, C.: Inhomogeneous relaxation of a molecular layer on an insulator due to compressive stress. Phys. Rev. Lett. 108(20), 206103 (2012)Google Scholar
  69. 69.
    Barth, C., Gingras, M., Foster, A.S., Gulans, A., Félix, G., Hynninen, T., Peresutti, R., Henry, C.R.: Two-dimensional nanostructured growth of nanoclusters and molecules on insulating suzuki surfaces. Adv. Mater. 24, 3228–3232 (2012)Google Scholar
  70. 70.
    Hoff, B., Gingras, A., Foster, S., Peresutti, R., Henry, C.R., Barth, C.: Mechanisms of the adsorption and self-assembly of molecules with polarized functional groups on insulating surfaces. J. Phys. Chem. C 118, 14569–14578 (2014)Google Scholar
  71. 71.
    Barth, C., Henry, C.R.: High-resolution imaging of gold clusters on KBr(001) surfaces investigated by dynamic scanning force microscopy. Nanotechnology 15, 1264–1272 (2004)Google Scholar
  72. 72.
    Pakarinen, O.H., Barth, C., Foster, A.S., Henry, C.R.: High-resolution scanning force microscopy of gold nanoclusters on the KBr (001) surface. Phys. Rev. B 73, 235428 (2006)Google Scholar
  73. 73.
    Barth, C., Henry, C.R.: Gold nanoclusters on alkali halide surfaces: charging and tunneling. Appl. Phys. Lett. 89, 252119 (2006)Google Scholar
  74. 74.
    Mativetsky, J.M., Burke, S.A., Fostner, S., Grutter, P.: Nanoscale pits as templates for building a molecular device. Small 3, 818–821 (2007)Google Scholar
  75. 75.
    Mativetsky, J.M., Fostner, S., Burke, S.A., Grutter, P.: High-resolution investigation of metal nanoparticle growth on an insulating surface. Phys. Rev. B 80, 45430 (2009)Google Scholar
  76. 76.
    Glatzel, T., Zimmerli, L., Koch, S., Kawai, S., Meyer, E.: Molecular assemblies grown between metallic contacts on insulating surfaces. Appl. Phys. Lett. 94, 063303 (2009)Google Scholar
  77. 77.
    Barth, C., Claeys, C., Henry, C.R.: Surface preparation of hard ionic crystals by ultrahigh vacuum cleavage. Rev. Sci. Instr. 76, 083907 (2005)Google Scholar
  78. 78.
    Barth, C., Henry, C.R.: Kelvin probe force microscopy on surfaces of UHV cleaved ionic crystals. Nanotechnology 17, S155–S161 (2006)Google Scholar
  79. 79.
    Cabailh, G., Henry, C.R., Barth, C.: Thin NaCl films on silver (001): Island growth and work function. New J. Phys. 14, 103037 (2012)Google Scholar
  80. 80.
    Zhang, Y., Cattrall, R.W., McKelvie, I.D., Kolev, S.D.: Gold, an alternative to platinum group metals in automobile catalytic converters. Gold Bull. 44, 145–153 (2011)Google Scholar
  81. 81.
    Foster, A.S., Trevethan, T., Shluger, A.L.: Structure and diffusion of intrinsic defects, adsorbed hydrogen, and water molecules at the surface of alkali-earth fluorides calculated using density functional theory. Phys. Rev. B 80, 115421 (2009)Google Scholar
  82. 82.
    Hofer, W.A., Foster, A.S., Shluger, A.L.: Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 75, 1287–1331 (2003)Google Scholar
  83. 83.
    McKenna, K., Trevethan, T., Shluger, A.L.: Interplay between adsorbate diffusion and electron tunneling at an insulating surface. Phys. Rev. B 82, 85427 (2010)Google Scholar
  84. 84.
    Frenkel, Y.: Kinetic Theory of Liquids. The Clarendon Press, Oxford (1946)Google Scholar
  85. 85.
    Whitworth, R.W.: Charged dislocations in ionic crystals. Adv. Phys. 24, 203–304 (1975)Google Scholar
  86. 86.
    Kliewer, K.L., Koehler, J.S.: Space charge in ionic crystals. I. General approach with application to NaCl. Phys. Rev. 140, A1226–A1240 (1965)Google Scholar
  87. 87.
    Kliewer, K.L.: Space charge in ionic crystals. II. The electron affinity and impurity accumulation. Phys. Rev. 140, A1241–A1246 (1965)Google Scholar
  88. 88.
    Kliewer, K.: Space charge in ionic crystals—III. Silver halides containing divalent cations. J. Phys. Chem. Solids 27, 705–717 (1966)Google Scholar
  89. 89.
    Poeppel, R.B., Blakely, J.M.: Origin of equilibrium space charge potentials in ionic crystals. Surf. Sci. 15, 507–523 (1969)Google Scholar
  90. 90.
    Butman, M.F., Smirnov, A.A., Kudin, L.S., Munir, Z.A.: Determination of the sign of the intrinsic surface charge in alkali halides from ionic sublimation measurements. Surf. Sci. 458, 106–112 (2000)Google Scholar
  91. 91.
    Baetzold, R.C.: Computation of the energetics of surface vacancy and interstitial generation in silver halide. Phys. Rev. B 52, 11424–11431 (1995)Google Scholar
  92. 92.
    Blakely, J.M., Danyluk, S.: Space charge regions at silver halide surfaces: effects of divalent impurities and halogen pressure. Surf. Sci. 40(1), 37–60 (1973)Google Scholar
  93. 93.
    Rao, A., Gnecco, E., Marchetto, D., Mougin, K., Schönenberger, M., Valeri, S., Meyer, E.: The analytical relations between particles and probe trajectories in atomic force microscope nanomanipulation. Nanotechnology 20(11), 115706 (2009)Google Scholar
  94. 94.
    Barth, C., Foster, A.S., Reichling, M., Shluger, A.L.: Contrast formation in atomic resolution scanning force microscopy on CaF2 (111): experiment and theory. J. Phys.: Condens. Matter 13, 2061 (2001)Google Scholar
  95. 95.
    Barth, C., Pakarinen, O.H., Foster, A.S., Henry, C.R.: Imaging nanoclusters in the constant height mode of the dynamic SFM. Nanotechnology 17, S128–S136 (2006)Google Scholar
  96. 96.
    Pakarinen, O.H., Barth, C., Foster, A.S., Henry, C.R.: Imaging the real shape of nanoclusters in scanning force microscopy. J. Appl. Phys. 103, 054313 (2008)Google Scholar
  97. 97.
    Harding, J.H., Stoneham, A.M., Venables, J.A.: Predicting nucleation and growth processes: atomistic modeling of metal atoms on ionic substrates. Phys. Rev. B 57(11), 6715–6719 (1998)Google Scholar
  98. 98.
    Hakala, M.H., Pakarinen, O.H., Foster, A.S.: First-principles study of adsorption, diffusion, and charge stability of metal adatoms on alkali halide surfaces. Phys. Rev. B 78(4), 045418 (2008)Google Scholar
  99. 99.
    Omicron NanoTechnology GmbH, Taunusstein (Germany)Google Scholar
  100. 100.
    Nanosurf AG, Liestal (Switzerland)Google Scholar
  101. 101.
    Eigler, D.M., Lutz, C.P., Rudge, W.E.: Atomic switch realised with the scanning tunnelling microscope. Nature 352, 600–603 (1991)Google Scholar
  102. 102.
    Sweetman, A., Jarvis, S., Danza, R., Moriarty, P.: Effect of the tip state during qPlus noncontact atomic force microscopy of Si (100) at 5 K: probing the probe. Beilstein J. Nanotechnol. 3(1), 25–32 (2012)Google Scholar
  103. 103.
    Sweetman, A., Stannard, A., Sugimoto, Y., Abe, M., Morita, S., Moriarty, P.: Simultaneous noncontact AFM and STM of Ag: Si(111)-(\(\sqrt 3 \times \sqrt 3\))R300. Phys. Rev. B 87(7), 075310 (2013)Google Scholar
  104. 104.
    Yurtsever, A., Sugimoto, Y., Tanaka, H., Abe, M., Morita, S., Ondráček, M., Pou, P., Pérez, R., Jelínek, P.: Force mapping on a partially H-covered Si(111)-(7 × 7) surface: influence of tip and surface reactivity. Phys. Rev. B: Condens. Matter 87(15), 155403 (2013)Google Scholar
  105. 105.
    Baykara, M.Z., Schwendemann, T.C., Altman, E.I., Schwarz, U.D.: Three-dimensional atomic force microscopy—taking surface imaging to the next level. Adv. Mater. 22, 2838–2853 (2010)Google Scholar
  106. 106.
    Rahe, Ph, Schutte, J., Schniederberend, W., Reichling, M., Abe, M., Sugimoto, Y., Kuhnle, A.: Flexible drift-compensation system for precise 3D force mapping in severe drift environments. Rev. Sci. Instr. 82(6), 063704 (2011)Google Scholar
  107. 107.
    Bennewitz, R., Schar, S., Barwich, V., Pfeiffer, O., Meyer, E., Krok, F., Such, B., Kolodzej, J., Szymonski, M.: Atomic-resolution images of radiation damage in KBr. Surf. Sci. 474, L197–L202 (2001)Google Scholar
  108. 108.
    Barth, C., Henry, C.R.: NaCl(001) surfaces nanostructured by Suzuki precipitates: a scanning force microscopy study. New J. Phys. 11, 043003 (2009)Google Scholar
  109. 109.
    Pacchioni, G.: Theory of point defects at the MgO surface. In: Woodruff, D.P. (ed.) The Chemical Physics of Solid Surfaces. Elsevier, Amsterdam (2002)Google Scholar
  110. 110.
    Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003)Google Scholar
  111. 111.
    Pang, C.L., Lindsay, R., Thornton, G.: Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37(10), 2328–2353 (2008)Google Scholar
  112. 112.
    Dohnálek, Z., Lyubinetsky, I., Rousseau, R.: Thermally-driven processes on rutile TiO2(110)-(1 × 1): a direct view at the atomic scale. Prog. Surf. Sci. 85(5), 161–205 (2010)Google Scholar
  113. 113.
    Paier, J., Penschke, Ch., Sauer, J.: Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem. Rev. 113(6), 3949–3985 (2013)Google Scholar
  114. 114.
    Kelber, J.A.: Alumina surfaces and interfaces under non-ultrahigh vacuum conditions. Surf. Sci. Rep. 62(7), 271–303 (2007)Google Scholar
  115. 115.
    Freund, H.J., Pacchioni, G.: Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem. Soc. Rev. 37, 2224–2242 (2008)Google Scholar
  116. 116.
    Chen, M.S., Goodman, D.W.: Ultrathin, ordered oxide films on metal surfaces. J. Phys.: Condens. Matter 20, 264013 (2008)Google Scholar
  117. 117.
    Nilius, N.: Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf. Sci. Rep. 64, 595–659 (2009)Google Scholar
  118. 118.
    Artiglia, L., Cavaliere, E., Vascon, A., Bondino, F., Rizzi, G.A., Gavioli, L., Granozzi, G.: Reactivity of Fe nanoparticles on TiOx/Pt(111): a complete surface science investigation. J. Phys. Chem. C 115, 15812–15821 (2011)Google Scholar
  119. 119.
    Pacchioni, G., Freund, H.-J.: Electron transfer at oxide surfaces. The MgO paradigm: from defects to ultrathin films. Chem. Rev. 113, 4035–4072 (2013)Google Scholar
  120. 120.
    Lauritsen, J.V., Reichling, M.: Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. J. Phys.: Condens. Matter 22, 263001 (2010)Google Scholar
  121. 121.
    Palacios-Lidon, E., Henry, C.R., Barth, C.: Kelvin probe force microscopy in surface chemistry: reactivity of Pd nanoparticles on highly oriented pirolytic graphite. ACS Catal. 4(6), 1838–1844 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CNRSAix-Marseille UniversitéMarseille Cedex 09France

Personalised recommendations