Skip to main content

The Prime Number Theorem

  • Chapter
Why Prove it Again?
  • 2028 Accesses

Abstract

In the wake of Euclid’s proof of the infinitude of the primes, the question of how the primes were distributed among the integers became central — a question that has intrigued and challenged mathematicians ever since. The sieve of Eratosthenes provided a simple but very inefficient means of identifying which integers were prime, but attempts to find explicit, closed formulas for the nth prime, or for the number π(x) of primes less than or equal to a given number x, proved fruitless. Eventually extensive tables of integers and their least factors were compiled, detailed examination of which suggested that the apparently unpredictable occurrence of primes in the sequence of integers nonetheless exhibited some statistical regularity. In particular, in 1792 Euler asserted that for large values of x,  π(x) was approximately given by \(\dfrac{x} {\ln x}\); six years later, Legendre suggested \(\dfrac{x} {\ln x - 1}\) and (wrongly) \(\dfrac{x} {\ln x - 1.0836}\) as better approximations; and in 1849, in a letter to his student Encke (translated in the appendix to Goldstein (1973)), Gauss mentioned his apparently long-held belief that the logarithmic integral

$$\displaystyle{ \text{li}(x) =\int _{ 2}^{x}\dfrac{1} {\ln t}\,\mathit{dt} }$$

gave a still better approximation. Using the notation f(x) ∼ g(x) to denote the equivalence relation defined by \(\lim _{x\rightarrow \infty }\dfrac{f(x)} {g(x)} = 1\), those conjectures may be expressed in asymptotic form by the statements

$$\displaystyle{ \pi (x) \sim \dfrac{x} {\ln x},\quad \pi (x) \sim \dfrac{x} {\ln x - 1},\quad \text{and}\quad \pi (x) \sim \text{li}(x). }$$
(PNT)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some texts instead define \(\text{li}(x)\) as \(\lim _{\epsilon \rightarrow 0}\big(\int _{0}^{1-\epsilon }1/\ln t\,\mathit{dt} +\int _{ 1+\epsilon }^{x}1/\ln t\,\mathit{dt}\big)\), which adds a constant (approximately 1.04) to li(x) as defined above, but does not affect asymptotic arguments.

  2. 2.

    In part for those proofs, Selberg was awarded a Fields Medal in 1950 and Erdős the 1951 Cole Prize in Number Theory.

  3. 3.

    In fact, for any absolutely convergent series \(\sum _{n=1}^{\infty }f(n)\) of non-zero terms, if f(n) is completely multiplicative and no f(n) = −1, then \(\sum _{n=1}^{\infty }f(n) =\prod _{p\,\mathit{prime}}(1 - f(p))^{-1}\).

  4. 4.

    The result of applying the formula

    $$\displaystyle{\sum _{2\leq n\leq x}a(n)g(n) =\Big [\sum _{n\leq x}a(n)\Big]g(x) -\int _{\,2}^{x}\Big[\sum _{ n\leq t}a(n)\Big]\,g^{{\prime}}(t)\,\mathit{dt},}$$

    valid whenever a(1) = 0 and g(x) has a continuous derivative on [2, x].

  5. 5.

    A detailed commentary on developments stemming from Riemann’s classic paper is given in Edwards (1974).

  6. 6.

    In the other cases Hadamard used the identity \(1/z^{\mu } = \dfrac{(-1)^{\mu -1}} {\Gamma (\mu )} \, \dfrac{d^{\mu -1}} {\mathit{dz}^{\mu -1}}(1/z)\), together with Cauchy’s integral theorem, to obtain the general formula

    $$\displaystyle{ J_{\mu } = \dfrac{1} {2\pi i}\int _{a-\infty i}^{a+\infty i}\dfrac{x^{z}} {z^{\mu }} \,\mathit{dz} = \left \{\begin{array}{@{}l@{\quad }l@{}} 0 \quad &\mbox{ if $x < 1$,} \\ \dfrac{(\ln \,x)^{\mu -1}} {\Gamma (\mu )} \quad &\mbox{ if $x > 1$}. \end{array} \right. }$$
  7. 7.

    In a statement quoted on page 198 of Narkiewicz (2000), de la Vallée Poussin agreed, but nevertheless claimed priority for the proof of that result.

  8. 8.

    Cf. the discussion in Bateman and Diamond (1996), p. 736.

  9. 9.

    According to Bateman and Diamond (1996), p. 737, Landau was the first to prove the PNT without recourse to that functional equation.

  10. 10.

    \(\sum _{n=2}^{N}f(n) =\int _{ 1}^{N}f(x)\,\mathit{dx} +\int _{ 1}^{N}(x - [x])f^{{\prime}}(x)\,\mathit{dx}\).

  11. 11.

    Discussed in detail in Narkiewicz (2000), pp. 298–302.

  12. 12.

    Ingham’s theorem may alternatively be stated in terms of the Mellin transform \(\int _{1}^{\infty }f(t)t^{-s}\,\mathit{dt}\). See, e.g., Korevaar (1982) or Jameson (2003), pp. 124–129.

  13. 13.

    Whereby f(x) = O(g(x)) for \(x > x_{1} \geq x_{0}\) means that f is eventually dominated by g, that is, that f and g are both defined for x > x 0, g(x) > 0 for x > x 0, and there is a constant K such that | f(x) | ≤ Kg(x) for all x > x 1.

  14. 14.

    For as noted in the preceding section, the Wiener-Ikehara Theorem implies that the Prime Number Theorem follows from the absence of zeroes of the ζ-function on the line Re s = 1, a fact that is also implied by the Prime Number Theorem. (See, for example, Diamond 1982, pp. 572–573.)

  15. 15.

    Regrettably, the interaction between Erdős and Selberg in this matter was a source of lasting bitterness between them. Goldfeld (2004) provides a balanced account of the dispute, based on primary sources. As noted there, the issue was not one of priority of discovery, but “arose over the question of whether a joint paper (on the entire proof) or separate papers (on each individual contribution) should appear”.

  16. 16.

    Levinson’s paper won the Mathematical Association of America’s Chauvenet Prize for exposition in 1971. Nevertheless, after reading it, the number theorist Harold Stark commented “Well, Norman tried, but the thing is as mysterious as ever.” (Quoted in Segal 2009, p. 99.)

  17. 17.

    The Möbius inversion formula by itself does not suffice to give the desired bound on R(x), and that, in Levinson’s opinion, accounts for “the long delay in the discovery of an elementary proof” of the Prime Number Theorem. (Levinson 1969, p. 235)

  18. 18.

    “Nous allons voir qu’en modifiant légèrement l’analyse de l’auteur on peut établir le même résultat en toute rigeur.”

  19. 19.

    Three other instances given in Jameson (2003) are \(\sum _{n=1}^{\infty }\dfrac{\mu (n)} {n} = 0\), where μ denotes the Möbius function, \(\sum _{n=1}^{\infty } \dfrac{\mu (n)} {n^{1+\mathit{it}}} = \dfrac{1} {\zeta (1 + \mathit{it})}\), and \(\sum _{n=1}^{\infty }\dfrac{(-1)^{\Omega (n)}} {n} = 0\), where \(\Omega (n)\) denotes the number of prime factors of n, each counted according to its multiplicity.

References

  • Bateman, P., Diamond, H.: A hundred years of prime numbers. Amer. Math. Monthly 103, 729–741 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Chebyshev, P.: Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée. Mémoires des savants étrangers de l’Acad. Sci. St.Pétersbourg 6, 1–19 (1848)

    Google Scholar 

  • Chebyshev, P.: Mémoire sur nombres premiers. Mémoires des savants étrangers de l’Acad. Sci. St.Pétersbourg 7, 17–33 (1850)

    Google Scholar 

  • de la Vallée Poussin, C.: Recherches analytiques sur la théorie des nombres premiers. Ann. Soc. Sci. Bruxelles 20, 183–256 (1896)

    Google Scholar 

  • Diamond, H.: Elementary methods in the study of the distribution of prime numbers. Bull. Amer. Math. Soc. 7, 553–589 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards, H.M.: Riemann’s Zeta Function. Academic Press, New York and London (1974)

    MATH  Google Scholar 

  • Erdős, P.: On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U.S.A. 35, 374–384 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  • Goldfeld, D.: The elementary proof of the prime number theorem: an historical perspective. Number Theory (New York Seminar, 2003). Springer, New York, 179–192 (2004)

    Google Scholar 

  • Goldstein, L.J.: A history of the prime number theorem. Amer. Math. Monthly 80, 599–615 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. math. pures appl. (4) 9, 171–215 (1893)

    Google Scholar 

  • Hadamard, J.: Sur les zéros de la fonction ζ(s) de Riemann. Comptes Rendus Acad. Sci. Paris 122, 1470–1473 (1896a)

    MATH  Google Scholar 

  • Hadamard, J.: Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques. Bull. Soc. Math. France 24, 199–220 (1896b)

    MathSciNet  Google Scholar 

  • Hardy, G.H., Littlewood, J.: New proofs of the prime number theorem and similar theorems. Quart. J. Math., Oxford ser. 46, 215–219 (1915)

    Google Scholar 

  • Ingham, A.E.: On Wiener’s method in Tauberian theorems. Proc. London Math. Soc. (2)38, 458–480 (1935)

    Google Scholar 

  • Jameson, G.J.O.: The Prime Number Theorem. London Mathematical Society Student Texts 53. Cambridge U.P., Cambridge (2003)

    Google Scholar 

  • Korevaar, J.: On Newman’s quick way to the Prime Number Theorem. Math. Intelligencer 4:3, 108–115.

    Google Scholar 

  • Landau, E.: Zwei neue Herleitungen für die asymptotische Anzahl der Primzahlen unter einer gegebener Grenze. SBer. Kgl. Preuß. Akad. Wiss. Berlin, 746–764 (1908)

    Google Scholar 

  • Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen. Teubner, Leipzig (1909)

    MATH  Google Scholar 

  • Lax, P.D., Zalcman, L.: Complex Proofs of Real Theorems. University Lecture Series 58. Amer. Math. Soc., Providence (2012)

    Google Scholar 

  • Levinson, N.: A motivated account of an elementary proof of the prime number theorem. Amer. Math. Monthly 76, 225–245 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Narkiewicz, W.: The Development of Prime Number Theory. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  • Newman, D.J.: Simple analytic proof of the prime number theorem. Amer. Math. Monthly 87, 693–696 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Riemann, B.: Ueber die Anzahl der Primzahlen unter einer gegebener Größe. Monatsberichte der Königlichen Preußische Akademie der Wissenschaften zu Berlin, 671–680 (1860)

    Google Scholar 

  • Segal, J.: Recountings: Conversations with MIT Mathematicians. A K Peters, Natick, Mass. (2009)

    MATH  Google Scholar 

  • Selberg, A.: An elementary proof of the prime number theorem. Ann. Math. (2) 50, 305–313 (1949)

    Google Scholar 

  • von Mangoldt, H.: Zu Riemanns Abhandlung “Ueber die Anzanl der Primzahlen unter einer gegebenen Größe”. J. reine u. angewandte Math. 114, 255–305 (1895)

    Google Scholar 

  • Zagier, D.: Newman’s short proof of the Prime Number Theorem. Amer. Math. Monthly 104, 705–708 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dawson, J.W. (2015). The Prime Number Theorem. In: Why Prove it Again?. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-17368-9_10

Download citation

Publish with us

Policies and ethics