Skip to main content

Protein Misfolding in Lipid-Mimetic Environments

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 855))

Abstract

Among various cellular factors contributing to protein misfolding and subsequent aggregation, membranes occupy a special position due to the two-way relations between the aggregating proteins and cell membranes. On one hand, the unstable, toxic pre-fibrillar aggregates may interact with cell membranes, impairing their functions, altering ion distribution across the membranes, and possibly forming non-specific membrane pores. On the other hand, membranes, too, can modify structures of many proteins and affect the misfolding and aggregation of amyloidogenic proteins. The effects of membranes on protein structure and aggregation can be described in terms of the “membrane field” that takes into account both the negative electrostatic potential of the membrane surface and the local decrease in the dielectric constant. Water-alcohol (or other organic solvent) mixtures at moderately low pH are used as model systems to study the joint action of the local decrease of pH and dielectric constant near the membrane surface on the structure and aggregation of proteins. This chapter describes general mechanisms of structural changes of proteins in such model environments and provides examples of various proteins aggregating in the “membrane field” or in lipid-mimetic environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Aβ:

Amyloid-β

AFM:

Atomic force microscopy

ANS:

Anilino-8-napthalene sulfonate

CD:

Circular dichroism

DMPC:

Dimyristoyl phosphatidylcholine

DMPG:

1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt

DMPS:

Dimyristoyl phosphatidylserine

EtOH:

Ethanol

FTIR:

Fourier transform infrared spectroscopy

HFiP:

1,1,1,3,3,3-hexafluoro-2-propanol

HSA:

Human serum albumin

IAPP:

Islet amyloid polypeptide

IDP:

Intrinsically disordered protein

IDPR:

Intrinsically disordered protein region

LUV:

Large unilamellar vesicle

MeOH:

Methanol

nFGF-1:

Newt acidic fibroblast growth factor

PA:

1,2-dipalmitoyl-sn-glycero-3-phosphate

PC:

1,2-dipalmitoyl-sn-glycero-3-phospho-choline

PE:

1-palmitoyl-2-oleoyl-phosphoethano-lamine

PG:

1,2- dipalmitoyl-sn-glycero-3-phospho-RAC-(1-glycerol)

PI:

Phosphatidylinositol

PrOH:

Propanol

PS:

1-palmitoyl-2-oleoyl-phosphatidylserine

SUV:

Small unilamellar vesicle

TFE:

2,2,2-trifluoroethanol

ThT:

Thioflavin T

References

  • Ahmad A, Millett IS, Doniach S, Uversky VN, Fink AL (2003) Partially folded intermediates in insulin fibrillation. Biochemistry 42(39):11404–11416

    CAS  PubMed  Google Scholar 

  • Ahmad A, Millett IS, Doniach S, Uversky VN, Fink AL (2004) Stimulation of insulin fibrillation by urea-induced intermediates. J Biol Chem 279(15):14999–15013

    CAS  PubMed  Google Scholar 

  • Alexandrescu AT, Ng YL, Dobson CM (1994) Characterization of a trifluoroethanol-induced partially folded state of alpha-lactalbumin. J Mol Biol 235(2):587–599

    CAS  PubMed  Google Scholar 

  • Ancsin JB (2003) Amyloidogenesis: historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid 10(2):67–79

    CAS  PubMed  Google Scholar 

  • Appleton DW, Sarkar B (1971) The absence of specific copper (II)-binding site in dog albumin. A comparative study of human and dog albumins. J Biol Chem 246(16):5040–5046

    CAS  PubMed  Google Scholar 

  • Arakawa T, Goddette D (1985) The mechanism of helical transition of proteins by organic solvents. Arch Biochem Biophys 240(1):21–32

    CAS  PubMed  Google Scholar 

  • Arunkumar AI, Kumar TK, Kathir KM, Srisailam S, Wang HM, Leena PS, Chi YH, Chen HC, Wu CH, Wu RT, Chang GG, Chiu IM, Yu C (2002) Oligomerization of acidic fibroblast growth factor is not a prerequisite for its cell proliferation activity. Protein Sci 11(5):1050–1061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barrow CJ, Yasuda A, Kenny PT, Zagorski MG (1992) Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer’s disease. Analysis of circular dichroism spectra. J Mol Biol 225(4):1075–1093

    CAS  PubMed  Google Scholar 

  • Bedford MT, Leder P (1999) The FF domain: a novel motif that often accompanies WW domains. Trends Biochem Sci 24(7):264–265

    CAS  PubMed  Google Scholar 

  • Bellotti V, Mangione P, Stoppini M (1999) Biological activity and pathological implications of misfolded proteins. Cell Mol Life Sci 55(6–7):977–991

    CAS  PubMed  Google Scholar 

  • Binolfi A, Theillet FX, Selenko P (2012) Bacterial in-cell NMR of human alpha-synuclein: a disordered monomer by nature? Biochem Soc Trans 40(5):950–954

    CAS  PubMed  Google Scholar 

  • Bonet R, Ramirez-Espain X, Macias MJ (2008) Solution structure of the yeast URN1 splicing factor FF domain: comparative analysis of charge distributions in FF domain structures-FFs and SURPs, two domains with a similar fold. Proteins 73(4):1001–1009

    CAS  PubMed  Google Scholar 

  • Bonini NM, Giasson BI (2005) Snaring the function of alpha-synuclein. Cell 123(3):359–361

    CAS  PubMed  Google Scholar 

  • Breydo L, Uversky VN (2011) Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics 3(11):1163–1180

    CAS  PubMed  Google Scholar 

  • Breydo L, Wu JW, Uversky VN (2012) Alpha-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 2:261–285

    Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511

    CAS  PubMed  Google Scholar 

  • Buck M (1998) Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys 31(3):297–355

    CAS  PubMed  Google Scholar 

  • Buck M, Radford SE, Dobson CM (1993) A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry 32(2):669–678

    CAS  PubMed  Google Scholar 

  • Bussell R Jr, Ramlall TF, Eliezer D (2005) Helix periodicity, topology, and dynamics of membrane-associated alpha-synuclein. Protein Sci 14(4):862–872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bychkova VE, Dujsekina AE, Klenin SI, Tiktopulo EI, Uversky VN, Ptitsyn OB (1996) Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry 35(19):6058–6063

    CAS  PubMed  Google Scholar 

  • Castillo V, Chiti F, Ventura S (2013) The N-terminal helix controls the transition between the soluble and amyloid states of an FF domain. PLoS One 8(3):e58297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YG, Siddhanta A, Austin CD, Hammond SM, Sung TC, Frohman MA, Morris AJ, Shields D (1996) Phospholipase D stimulates release of nascent secretory vesicles from trans-Golgi network. J Cell Biol 138(3):495–504

    Google Scholar 

  • Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A 96(7):3590–3594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark A, Nilsson MR (2004) Islet amyloid: a complication of islet dysfunction or an aetiological factor in type 2 diabetes? Diabetologia 47(2):157–169

    CAS  PubMed  Google Scholar 

  • Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of amyloid beta-peptide(1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37(31):11064–11077

    CAS  PubMed  Google Scholar 

  • Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK (2005) Natively disordered proteins. In: Buchner J, Kiefhaber T (eds) Handbook of protein folding. Wiley-VCH, Weinheim, pp 271–353

    Google Scholar 

  • Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273(16):9443–9449

    CAS  PubMed  Google Scholar 

  • de Laureto PP, Tosatto L, Frare E, Marin O, Uversky VN, Fontana A (2006) Conformational properties of the SDS-bound state of alpha-synuclein probed by limited proteolysis: unexpected rigidity of the acidic C-terminal tail. Biochemistry 45(38):11523–11531

    PubMed  Google Scholar 

  • Diaz MD, Berger S (2001) Preferential solvation of a tetrapeptide by trifluoroethanol as studied by intermolecular NOE. Magn Reson Chem 39(7):369–373

    CAS  Google Scholar 

  • Diaz MD, Fioroni M, Burger K, Berger S (2002) Evidence of complete hydrophobic coating of bombesin by trifluoroethanol in aqueous solution: an NMR spectroscopic and molecular dynamics study. Chemistry 8(7):1663–1669

    CAS  PubMed  Google Scholar 

  • Dikiy I, Eliezer D (2012) Folding and misfolding of alpha-synuclein on membranes. Biochim Biophys Acta 1818(4):1013–1018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24(9):329–332

    CAS  PubMed  Google Scholar 

  • Dobson CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 356(1406):133–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    CAS  PubMed  Google Scholar 

  • Dufour E, Bertrand-Harb C, Haertle T (1993) Reversible effects of medium dielectric constant on structural transformation of beta-lactoglobulin and its retinol binding. Biopolymers 33(4):589–598

    CAS  PubMed  Google Scholar 

  • Dufour E, Robert P, Bertrand D, Haertle T (1994) Conformation changes of beta-lactoglobulin: an ATR infrared spectroscopic study of the effect of pH and ethanol. J Protein Chem 13(2):143–149

    CAS  PubMed  Google Scholar 

  • Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Informatics Ser Workshop 11:161–171

    CAS  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59

    CAS  PubMed  Google Scholar 

  • Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148

    CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    CAS  PubMed  Google Scholar 

  • Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073

    CAS  PubMed  Google Scholar 

  • Endo T, Schatz G (1988) Latent membrane perturbation activity of a mitochondrial precursor protein is exposed by unfolding. EMBO J 7(4):1153–1158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan P, Bracken C, Baum J (1993) Structural characterization of monellin in the alcohol-denatured state by NMR: evidence for beta-sheet to alpha-helix conversion. Biochemistry 32(6):1573–1582

    CAS  PubMed  Google Scholar 

  • Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA (2012a) Characterization of semisynthetic and naturally Nalpha-acetylated alpha-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of alpha-synuclein. J Biol Chem 287(34):28243–28262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion N, Eliezer D, Moore DJ, Schneider B, Aebischer P, El-Agnaf OM, Masliah E, Lashuel HA (2012b) Alpha-synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem 287(19):15345–15364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fezoui Y, Teplow DB (2002) Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. J Biol Chem 277(40):36948–36954

    CAS  PubMed  Google Scholar 

  • Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3(1):R9–R23

    CAS  PubMed  Google Scholar 

  • Fioroni M, Diaz MD, Burger K, Berger S (2002) Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study. J Am Chem Soc 124(26):7737–7744

    CAS  PubMed  Google Scholar 

  • Furukawa K, Matsuzaki-Kobayashi M, Hasegawa T, Kikuchi A, Sugeno N, Itoyama Y, Wang Y, Yao PJ, Bushlin I, Takeda A (2006) Plasma membrane ion permeability induced by mutant alpha-synuclein contributes to the degeneration of neural cells. J Neurochem 97(4):1071–1077

    CAS  PubMed  Google Scholar 

  • Gasch A, Wiesner S, Martin-Malpartida P, Ramirez-Espain X, Ruiz L, Macias MJ (2006) The structure of Prp40 FF1 domain and its interaction with the Crn-TPR1 motif of Clf1 gives a new insight into the binding mode of FF domains. J Biol Chem 281(1):356–364

    CAS  PubMed  Google Scholar 

  • Gast K, Siemer A, Zirwer D, Damaschun G (2001) Fluoroalcohol-induced structural changes of proteins: some aspects of cosolvent-protein interactions. Eur Biophys J 30(4):273–283

    CAS  PubMed  Google Scholar 

  • Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D (2008) Membrane-bound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles. J Am Chem Soc 130(39):12856–12857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glenner GG, Wong CW (1984a) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122(3):1131–1135

    CAS  PubMed  Google Scholar 

  • Glenner GG, Wong CW (1984b) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890

    CAS  PubMed  Google Scholar 

  • Glenner GG, Wong CW, Quaranta V, Eanes ED (1984) The amyloid deposits in Alzheimer’s disease: their nature and pathogenesis. Appl Pathol 2(6):357–369

    CAS  PubMed  Google Scholar 

  • Goda S, Takano K, Yamagata Y, Nagata R, Akutsu H, Maki S, Namba K, Yutani K (2000) Amyloid protofilament formation of hen egg lysozyme in highly concentrated ethanol solution. Protein Sci 9(2):369–375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gruber HJ, Low PS (1988) Interaction of amphiphiles with integral membrane proteins. I. Structural destabilization of the anion transport protein of the erythrocyte membrane by fatty acids, fatty alcohols, and fatty amines. Biochim Biophys Acta 944(3):414–424

    CAS  PubMed  Google Scholar 

  • Grudzielanek S, Jansen R, Winter R (2005) Solvational tuning of the unfolding, aggregation and amyloidogenesis of insulin. J Mol Biol 351(4):879–894

    CAS  PubMed  Google Scholar 

  • Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci U S A 95(8):4224–4228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haaning S, Radutoiu S, Hoffmann SV, Dittmer J, Giehm L, Otzen DE, Stougaard J (2008) An unusual intrinsically disordered protein from the model legume Lotus japonicus stabilizes proteins in vitro. J Biol Chem 283(45):31142–31152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamada D, Kuroda Y, Tanaka T, Goto Y (1995) High helical propensity of the peptide fragments derived from beta-lactoglobulin, a predominantly beta-sheet protein. J Mol Biol 254(4):737–746

    CAS  PubMed  Google Scholar 

  • Hirota N, Mizuno K, Goto Y (1998) Group additive contributions to the alcohol-induced alpha-helix formation of melittin: implication for the mechanism of the alcohol effects on proteins. J Mol Biol 275(2):365–378

    CAS  PubMed  Google Scholar 

  • Holley M, Eginton C, Schaefer D, Brown LR (2008) Characterization of amyloidogenesis of hen egg lysozyme in concentrated ethanol solution. Biochem Biophys Res Commun 373(1):164–168

    CAS  PubMed  Google Scholar 

  • Hong D-P, Hoshino M, Kuboi R, Goto Y (1999) Clustering of fluorine-substituted alcohols as a factor responsible for their marked effects on proteins and peptides. J Am Chem Soc 121:8427–8433

    CAS  Google Scholar 

  • Jackson M, Mantsch HH (1992) Halogenated alcohols as solvents for proteins: FTIR spectroscopic studies. Biochim Biophys Acta 1118(2):139–143

    CAS  PubMed  Google Scholar 

  • Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345(1):27–32

    CAS  PubMed  Google Scholar 

  • Jao CC, Der-Sarkissian A, Chen J, Langen R (2004) Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci U S A 101(22):8331–8336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jao CC, Hegde BG, Chen J, Haworth IS, Langen R (2008) Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci U S A 105(50):19666–19671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenco JM, Rawlingson A, Daniels B, Morris AJ (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37(14):4901–4909

    CAS  PubMed  Google Scholar 

  • Jimenez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18(4):815–821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jimenez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci U S A 99(14):9196–9201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE (2000) Alpha-synuclein membrane interactions and lipid specificity. J Biol Chem 275(44):34328–34334

    CAS  PubMed  Google Scholar 

  • Jo E, Fuller N, Rand RP, St George-Hyslop P, Fraser PE (2002) Defective membrane interactions of familial Parkinson’s disease mutant A30P alpha-synuclein. J Mol Biol 315(4):799–807

    CAS  PubMed  Google Scholar 

  • Jones DT, Ward JJ (2003) Prediction of disordered regions in proteins from position specific score matrices. Proteins 53(Suppl 6):573–578

    CAS  PubMed  Google Scholar 

  • Juarez J, Lopez SG, Cambon A, Taboada P, Mosquera V (2009) Influence of electrostatic interactions on the fibrillation process of human serum albumin. J Phys Chem B 113(30):10521–10529

    CAS  PubMed  Google Scholar 

  • Kallberg Y, Gustafsson M, Persson B, Thyberg J, Johansson J (2001) Prediction of amyloid fibril-forming proteins. J Biol Chem 276(16):12945–12950

    CAS  PubMed  Google Scholar 

  • Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8(1):101–106

    CAS  PubMed  Google Scholar 

  • Kentsis A, Sosnick TR (1998) Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding. Biochemistry 37(41):14613–14622

    CAS  PubMed  Google Scholar 

  • Khurana R, Gillespie JR, Talapatra A, Minert LJ, Ionescu-Zanetti C, Millett I, Fink AL (2001) Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Biochemistry 40(12):3525–3535

    CAS  PubMed  Google Scholar 

  • Kirkitadze MD, Condron MM, Teplow DB (2001) Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 312(5):1103–1119

    CAS  PubMed  Google Scholar 

  • Konno T, Oiki S, Morii T (2007) Synergistic action of polyanionic and non-polar cofactors in fibrillation of human islet amyloid polypeptide. FEBS Lett 581(8):1635–1638

    CAS  PubMed  Google Scholar 

  • Kuprin S, Graslund A, Ehrenberg A, Koch MH (1995) Nonideality of water-hexafluoropropanol mixtures as studied by X-ray small angle scattering. Biochem Biophys Res Commun 217(3):1151–1156

    CAS  PubMed  Google Scholar 

  • Lansbury PT Jr (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci U S A 96(7):3342–3344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HJ, Choi C, Lee SJ (2002) Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277(1):671–678

    CAS  PubMed  Google Scholar 

  • Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Informatics Ser Workshop 10:30–40

    CAS  Google Scholar 

  • Libich DS, Harauz G (2008) Solution NMR and CD spectroscopy of an intrinsically disordered, peripheral membrane protein: evaluation of aqueous and membrane-mimetic solvent conditions for studying the conformational adaptability of the 18.5 kDa isoform of myelin basic protein (MBP). Eur Biophys J 37(6):1015–1029

    CAS  PubMed  Google Scholar 

  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003a) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    CAS  PubMed  Google Scholar 

  • Linding R, Russell RB, Neduva V, Gibson TJ (2003b) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Rost B (2003) NORSp: predictions of long regions without regular secondary structure. Nucleic Acids Res 31(13):3833–3835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madine J, Doig AJ, Middleton DA (2004) The aggregation and membrane-binding properties of an alpha-synuclein peptide fragment. Biochem Soc Trans 32(Pt 6):1127–1129

    CAS  PubMed  Google Scholar 

  • Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277(3):1641–1644

    CAS  PubMed  Google Scholar 

  • Marinelli P, Castillo V, Ventura S (2013) Trifluoroethanol modulates amyloid formation by the all alpha-helical URN1 FF domain. Int J Mol Sci 14(9):17830–17844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8(8):2804–2815

    CAS  PubMed  Google Scholar 

  • Marzban L, Park K, Verchere CB (2003) Islet amyloid polypeptide and type 2 diabetes. Exp Gerontol 38(4):347–351

    CAS  PubMed  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82(12):4245–4249

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLean PJ, Kawamata H, Ribich S, Hyman BT (2000) Membrane association and protein conformation of alpha-synuclein in intact neurons. Effect of Parkinson’s disease-linked mutations. J Biol Chem 275(12):8812–8816

    CAS  PubMed  Google Scholar 

  • Mezey E, Dehejia A, Harta G, Papp MI, Polymeropoulos MH, Brownstein MJ (1998) Alpha synuclein in neurodegenerative disorders: murderer or accomplice? Nat Med 4(7):755–757

    CAS  PubMed  Google Scholar 

  • Middleton ER, Rhoades E (2010) Effects of curvature and composition on alpha-synuclein binding to lipid vesicles. Biophys J 99(7):2279–2288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mihajlovic M, Lazaridis T (2008) Membrane-bound structure and energetics of alpha-synuclein. Proteins 70(3):761–778

    CAS  PubMed  Google Scholar 

  • Moriarty GM, Janowska MK, Kang L, Baum J (2013) Exploring the accessible conformations of N-terminal acetylated alpha-synuclein. FEBS Lett 587(8):1128–1138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munishkina LA, Phelan C, Uversky VN, Fink AL (2003) Conformational behavior and aggregation of alpha-synuclein in organic solvents: modeling the effects of membranes. Biochemistry 42(9):2720–2730

    CAS  PubMed  Google Scholar 

  • Narizhneva NV, Uversky VN (1997) Human alpha-fetoprotein is in the molten globule state under conditions modelling protein environment near the membrane surface. Protein Pept Lett 4(4):243–249

    CAS  Google Scholar 

  • Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40(20):6036–6046

    CAS  PubMed  Google Scholar 

  • Nuscher B, Kamp F, Mehnert T, Odoy S, Haass C, Kahle PJ, Beyer K (2004) Alpha-synuclein has a high affinity for packing defects in a bilayer membrane: a thermodynamics study. J Biol Chem 279(21):21966–21975

    CAS  PubMed  Google Scholar 

  • Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44(6):1989–2000

    CAS  PubMed  Google Scholar 

  • Otzen DE, Sehgal P, Nesgaard LW (2007) Alternative membrane protein conformations in alcohols. Biochemistry 46(14):4348–4359

    CAS  PubMed  Google Scholar 

  • Pallares I, Vendrell J, Aviles FX, Ventura S (2004) Amyloid fibril formation by a partially structured intermediate state of alpha-chymotrypsin. J Mol Biol 342(1):321–331

    CAS  PubMed  Google Scholar 

  • Pandey NK, Ghosh S, Dasgupta S (2010) Fibrillation in human serum albumin is enhanced in the presence of copper(II). J Phys Chem B 114(31):10228–10233

    CAS  PubMed  Google Scholar 

  • Perrin RJ, Woods WS, Clayton DF, George JM (2000) Interaction of human alpha-synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J Biol Chem 275(44):34393–34398

    CAS  PubMed  Google Scholar 

  • Perrin RJ, Woods WS, Clayton DF, George JM (2001) Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J Biol Chem 276(45):41958–41962

    CAS  PubMed  Google Scholar 

  • Pfefferkorn CM, Jiang Z, Lee JC (2012) Biophysics of alpha-synuclein membrane interactions. Biochim Biophys Acta 1818(2):162–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Popovic M, De Biasio A, Pintar A, Pongor S (2007) The intracellular region of the Notch ligand Jagged-1 gains partial structure upon binding to synthetic membranes. FEBS J 274(20):5325–5336

    CAS  PubMed  Google Scholar 

  • Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435–3438

    CAS  PubMed  Google Scholar 

  • Ptitsyn OB, Bychkova VE, Uversky VN (1995) Kinetic and equilibrium folding intermediates. Philos Trans R Soc Lond B Biol Sci 348(1323):35–41

    CAS  PubMed  Google Scholar 

  • Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92(5):1439–1456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reiersen H, Rees AR (2000) Trifluoroethanol may form a solvent matrix for assisted hydrophobic interactions between peptide side chains. Protein Eng 13(11):739–743

    CAS  PubMed  Google Scholar 

  • Rezaei-Ghaleh N, Amininasab M, Nemat-Gorgani M (2008) Conformational changes of alpha-chymotrypsin in a fibrillation-promoting condition: a molecular dynamics study. Biophys J 95(9):4139–4147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhoades E, Ramlall TF, Webb WW, Eliezer D (2006) Quantification of alpha-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys J 90(12):4692–4700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roccatano D, Colombo G, Fioroni M, Mark AE (2002) Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Proc Natl Acad Sci U S A 99(19):12179–12184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rochet JC, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10(1):60–68

    CAS  PubMed  Google Scholar 

  • Rodionova NA, Semisotnov GV, Kutyshenko VP, Uverskii VN, Bolotina IA (1989) Staged equilibrium of carbonic anhydrase unfolding in strong denaturants. Mol Biol 23(3):683–692

    CAS  Google Scholar 

  • Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42(1):38–48

    CAS  PubMed  Google Scholar 

  • Rozga M, Sokolowska M, Protas AM, Bal W (2007) Human serum albumin coordinates Cu(II) at its N-terminal binding site with 1 pM affinity. J Biol Inorg Chem 12(6):913–918

    CAS  PubMed  Google Scholar 

  • Santambrogio C, Ricagno S, Sobott F, Colombo M, Bolognesi M, Grandori R (2011) Characterization of beta2-microglobulin conformational intermediates associated to different fibrillation conditions. J Mass Spectrom 46(8):734–741

    CAS  PubMed  Google Scholar 

  • Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripas AF, Gilmanshin RI (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31(1):119–128

    CAS  PubMed  Google Scholar 

  • Shao H, Jao S, Ma K, Zagorski MG (1999) Solution structures of micelle-bound amyloid beta-(1–40) and beta-(1–42) peptides of Alzheimer’s disease. J Mol Biol 285(2):755–773

    CAS  PubMed  Google Scholar 

  • Shirahama T, Cohen AS (1967) High-resolution electron microscopic analysis of the amyloid fibril. J Cell Biol 33(3):679–708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirahama T, Benson MD, Cohen AS, Tanaka A (1973) Fibrillar assemblage of variable segments of immunoglobulin light chains: an electron microscopic study. J Immunol 110(1):21–30

    CAS  PubMed  Google Scholar 

  • Shvadchak VV, Falomir-Lockhart LJ, Yushchenko DA, Jovin TM (2011) Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe. J Biol Chem 286(15):13023–13032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silva BA, Breydo L, Fink AL, Uversky VN (2013) Agrochemicals, alpha-synuclein, and Parkinson’s disease. Mol Neurobiol 47(2):598–612

    CAS  PubMed  Google Scholar 

  • Sluzky V, Tamada JA, Klibanov AM, Langer R (1991) Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad Sci U S A 88(21):9377–9381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith DP, Jones S, Serpell LC, Sunde M, Radford SE (2003) A systematic investigation into the effect of protein destabilisation on beta 2-microglobulin amyloid formation. J Mol Biol 330(5):943–954

    CAS  PubMed  Google Scholar 

  • Srisailam S, Kumar TK, Rajalingam D, Kathir KM, Sheu HS, Jan FJ, Chao PC, Yu C (2003) Amyloid-like fibril formation in an all beta-barrel protein. Partially structured intermediate state(s) is a precursor for fibril formation. J Biol Chem 278(20):17701–17709

    CAS  PubMed  Google Scholar 

  • Sticht H, Bayer P, Willbold D, Dames S, Hilbich C, Beyreuther K, Frank RW, Rosch P (1995) Structure of amyloid A4-(1-40)-peptide of Alzheimer’s disease. Eur J Biochem 233(1):293–298

    CAS  PubMed  Google Scholar 

  • Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739

    CAS  PubMed  Google Scholar 

  • Sung YH, Eliezer D (2006) Secondary structure and dynamics of micelle bound beta- and gamma-synuclein. Protein Sci 15(5):1162–1174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sweede M, Ankem G, Chutvirasakul B, Azurmendi HF, Chbeir S, Watkins J, Helm RF, Finkielstein CV, Capelluto DG (2008) Structural and membrane binding properties of the prickle PET domain. Biochemistry 47(51):13524–13536

    CAS  PubMed  Google Scholar 

  • Taboada P, Barbosa S, Castro E, Mosquera V (2006) Amyloid fibril formation and other aggregate species formed by human serum albumin association. J Phys Chem B 110(42):20733–20736

    CAS  PubMed  Google Scholar 

  • Tamamizu-Kato S, Kosaraju MG, Kato H, Raussens V, Ruysschaert JM, Narayanaswami V (2006) Calcium-triggered membrane interaction of the alpha-synuclein acidic tail. Biochemistry 45(36):10947–10956

    CAS  PubMed  Google Scholar 

  • Tanford C (1968) Protein denaturation. Adv Protein Chem 23:121–282

    CAS  PubMed  Google Scholar 

  • Teplow DB (1998) Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 5(2):121–142

    CAS  PubMed  Google Scholar 

  • Thomas PD, Dill KA (1993) Local and nonlocal interactions in globular proteins and mechanisms of alcohol denaturation. Protein Sci 2(12):2050–2065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533

    CAS  PubMed  Google Scholar 

  • Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579(15):3346–3354

    CAS  PubMed  Google Scholar 

  • Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18(11):1169–1175

    CAS  PubMed  Google Scholar 

  • Ulmer TS, Bax A (2005) Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. J Biol Chem 280(52):43179–43187

    CAS  PubMed  Google Scholar 

  • Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280(10):9595–9603

    CAS  PubMed  Google Scholar 

  • Uversky VN (2003a) A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21(2):211–234

    CAS  PubMed  Google Scholar 

  • Uversky VN (2003b) Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 60(9):1852–1871

    CAS  PubMed  Google Scholar 

  • Uversky VN (2004) Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 318(1):225–241

    CAS  PubMed  Google Scholar 

  • Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103(1):17–37

    CAS  PubMed  Google Scholar 

  • Uversky VN (2008a) Alpha-synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci 9(5):507–540

    CAS  PubMed  Google Scholar 

  • Uversky VN (2008b) Amyloidogenesis of natively unfolded proteins. Curr Alzheimer Res 5(3):260–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uversky VN (2009a) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci 14:5188–5238

    CAS  Google Scholar 

  • Uversky VN (2009b) Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J 28(7–8):305–325

    CAS  PubMed  Google Scholar 

  • Uversky VN (2011a) Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 43(8):1090–1103

    CAS  PubMed  Google Scholar 

  • Uversky VN (2011b) Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 40(3):1623–1634

    CAS  PubMed  Google Scholar 

  • Uversky VN (2013a) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22(6):693–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uversky VN (2013b) Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 19(23):4191–4213

    CAS  PubMed  Google Scholar 

  • Uversky VN (2013c) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 1834(5):932–951

    CAS  PubMed  Google Scholar 

  • Uversky VN, Eliezer D (2009) Biophysics of Parkinson’s disease: structure and aggregation of alpha-synuclein. Curr Protein Pept Sci 10(5):483–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698(2):131–153

    CAS  PubMed  Google Scholar 

  • Uversky VN, Narizhneva NV, Kirschstein SO, Winter S, Lober G (1997) Conformational transitions provoked by organic solvents in beta-lactoglobulin: can a molten globule like intermediate be induced by the decrease in dielectric constant? Fold Des 2(3):163–172

    CAS  PubMed  Google Scholar 

  • Uversky VN, Talapatra A, Gillespie JR, Fink AL (1999a) Protein deposits as the molecular basis of amyloidosis. I. Systemic amyloidosis. Med Sci Monit 5:1001–1012

    CAS  Google Scholar 

  • Uversky VN, Talapatra A, Gillespie JR, Fink AL (1999b) Protein deposits as the molecular basis of amyloidosis. II. Localized amyloidosis and neurodegenerative disorders. Med Sci Monit 5:1238–1254

    CAS  Google Scholar 

  • Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41(3):415–427

    CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001a) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276(14):10737–10744

    CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001b) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular link between Parkinson’s disease and heavy metal exposure. J Biol Chem 276(47):44284–44296

    CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001c) Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett 500(3):105–108

    CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001d) Trimethylamine-N-oxide-induced folding of alpha-synuclein. FEBS Lett 509(1):31–35

    CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Bower K, Fink AL (2002a) Synergistic effects of pesticides and metals on the fibrillation of alpha-synuclein: implications for Parkinson’s disease. Neurotoxicology 23(4–5):527–536

    CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002b) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277(14):11970–11978

    CAS  PubMed  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18(5):343–384

    CAS  PubMed  Google Scholar 

  • van Rooijen BD, Claessens MM, Subramaniam V (2008) Membrane binding of oligomeric alpha-synuclein depends on bilayer charge and packing. FEBS Lett 582(27):3788–3792

    PubMed  Google Scholar 

  • van Rooijen BD, Claessens MM, Subramaniam V (2009) Lipid bilayer disruption by oligomeric alpha-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochim Biophys Acta 1788(6):1271–1278

    PubMed  Google Scholar 

  • Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40(26):7812–7819

    CAS  PubMed  Google Scholar 

  • Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 6(5):1899–1916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walgers R, Lee TC, Cammers-Goodwin A (1998) An indirect chaotropic mechanism of the stabilization of helix conformation of peptides in aqueous trifluoroethanol and hexafluoro-2-propanol. J Am Chem Soc 120:5073–5079

    CAS  Google Scholar 

  • Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272(35):22364–22372

    CAS  PubMed  Google Scholar 

  • Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274(36):25945–25952

    CAS  PubMed  Google Scholar 

  • Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004a) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20(13):2138–2139

    CAS  PubMed  Google Scholar 

  • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004b) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645

    CAS  PubMed  Google Scholar 

  • Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715

    CAS  PubMed  Google Scholar 

  • Wilkinson KD, Mayer AN (1986) Alcohol-induced conformational changes of ubiquitin. Arch Biochem Biophys 250(2):390–399

    CAS  PubMed  Google Scholar 

  • Williams RM, Obradovi Z, Mathura V, Braun W, Garner EC, Young J, Takayama S, Brown CJ, Dunker AK (2001) The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput 89–100

    Google Scholar 

  • Wright HT (1973) Comparison of the crystal structures of chymotrypsinogen-A and alpha-chymotrypsin. J Mol Biol 79(1):1–11

    CAS  PubMed  Google Scholar 

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331

    CAS  PubMed  Google Scholar 

  • Wu KP, Baum J (2010) Detection of transient interchain interactions in the intrinsically disordered protein alpha-synuclein by NMR paramagnetic relaxation enhancement. J Am Chem Soc 132(16):5546–5547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu KP, Kim S, Fela DA, Baum J (2008) Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: implication for aggregation. J Mol Biol 378(5):1104–1115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007a) Functional anthology of intrinsic disorder 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 6(5):1917–1932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007b) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6(5):1882–1898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi K, Naiki H, Goto Y (2006) Mechanism by which the amyloid-like fibrils of a beta 2-microglobulin fragment are induced by fluorine-substituted alcohols. J Mol Biol 363(1):279–288

    CAS  PubMed  Google Scholar 

  • Zerovnik E (2002) Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. Eur J Biochem 269(14):3362–3371

    CAS  PubMed  Google Scholar 

  • Zhu M, Fink AL (2003) Lipid binding inhibits alpha-synuclein fibril formation. J Biol Chem 278(19):16873–16877

    CAS  PubMed  Google Scholar 

  • Zhu M, Li J, Fink AL (2003) The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. J Biol Chem 278(41):40186–40197

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from Russian Science Foundation RSCF № 14-24-00131

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Uversky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uversky, V.N. (2015). Protein Misfolding in Lipid-Mimetic Environments. In: Gursky, O. (eds) Lipids in Protein Misfolding. Advances in Experimental Medicine and Biology, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-17344-3_2

Download citation

Publish with us

Policies and ethics