Skip to main content

Study of Nickel Catalysts Deposited by Using the Electroless Plating Method and Growth of the Multiwall Carbon Nanotubes

  • Conference paper
Book cover Proceedings of the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES2014)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 345))

Abstract

In this study, the electroless plating has been successfully applied for nickel catalyst layer and the multiwall carbon nanotubes (MWNTs) grown by chemical vapor deposition (CVD). Sulfuric acid solution was used as buffer to adjust and maintain pH value of electroless plating solution on 4.5. The structural, element, and quality of MWNTs were investigated with field emission scanning electron microscope (FE-SEM), X-ray diffraction patterns (XRD), energy dispersive spectrometer (EDS) and Raman spectrometer. From the FE-SEM image, it showed that the density of MWNTs increased as the deposition time of nickel catalyst layer increased. This result caused by the formation of nickel nucleation become rich as the immersion of the substrate in electroless plating solution was longer, and this benefited the growth of carbon nanotubes. The Raman analysis demonstrated that the ID/IG ratio of MWNTs decreases as the deposition times of nickel catalyst layer increases, indicating that more graphene MWNTs structures were formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saito, Y., Hamaguchi, K., Hata, K., Uchida, K., Tasaka, Y., Ikazaki, F., Yumura, M., Kasuya, A., Nishina, Y.: Conical beams from open nanotubes. Nature 389, 554–555 (1997)

    Article  Google Scholar 

  2. Schmid, H., Fink, H.W.: Carbon nanotubes are coherent electron sources. Appl. Phys. Lett. 70, 2679–2680 (1997)

    Article  Google Scholar 

  3. Rafique, M.M.A., Iqbal, J.: Production of carbon nanotubes by different routes-a review. J. Encap. Adsorpt. Sci. 1, 29–34 (2011)

    Google Scholar 

  4. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  5. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-Nm diameter. Nature 363, 603–605 (1993)

    Article  Google Scholar 

  6. Bethune, D.S., Kiang, C.H., De Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    Article  Google Scholar 

  7. Mcbride, W. S.: Synthesis of carbon nanotube by chemical vapor deposition. Undergraduate Degree Thesis, College of William and Marry in Virginia, Williamsburg (2001)

    Google Scholar 

  8. Mohammad, M.I., Moosa Ahmed, A., Potgieter, J.H., Ismael Mustafa, K.: Carbon nanotubes synthesis via arc discharge with a yttria catalyst. Nanomaterials 2013, 1–7 (2013). Article ID 785160

    Google Scholar 

  9. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E., Smalle, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)

    Article  Google Scholar 

  10. Qin, L.C., Zhou, D., Krauss, A.R., Gruen, D.M.: Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 72, 3437–3439 (1998)

    Article  Google Scholar 

  11. Li, W.Z., Xie, S.S., Qain, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A.: Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996)

    Article  Google Scholar 

  12. Kumar, M., Ando, Y.: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)

    Article  Google Scholar 

  13. Liu, C., Chen, Y.C., Tzeng, Y.: Effects of carbon content in iron catalyst coatings on the growth of vertically aligned carbon nanotubes on smooth silicon surfaces by thermal chemical vapor deposition. Diamond Relat. Mater. 13, 1274–1280 (2004)

    Article  Google Scholar 

  14. Jeong, H.J., Jeong, S.Y., Shin, Y.M., Han, J.H., Lim, S.C., Eum, S.J., Yang, C.W., Kim, N.G., Park, C.Y., Lee, Y.H.: Dual-catalyst growth of vertically aligned carbon nanotubes at low temperature in thermal chemical vapor deposition. Chem. Phys. Lett. 361, 189–195 (2002)

    Article  Google Scholar 

  15. Juang, Z.Y., Chien, I.P., Lai, J.F., Lai, T.S., Tsai, C.H.: The effects of ammonia on the growth of large-scale patterned aligned carbon nanotubes using thermal chemical vapor deposition method. Diamond Relat. Mater. 13, 1203–1209 (2004)

    Article  Google Scholar 

  16. Shyu, Y.M., Hong, F.C.N.: The effects of pre-treatment and catalyst composition on growth of carbon nanofibers at low temperature. Diamond Relat. Mater. 10, 1241–1245 (2001)

    Article  Google Scholar 

  17. Chaisitsak, S., Yamada, A., Konagai, M.: Hot filament enhanced CVD synthesis of carbon nanotubes by using a carbon filament. Diamond Relat. Mater. 13, 438–444 (2004)

    Article  Google Scholar 

  18. Kong, F.Z., Zhang, X.B., Xiong, W.Q., Liu, F., Huang, W.Z., Sun, Y.L., Tu, J.P., Chen, X.W.: Ni-layer on multiwall carbon nanotubes by an electroless plating method. Surf. Coat. Technol. 155, 33–36 (2002)

    Article  Google Scholar 

  19. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of CNTs. Imperial College Press, London (1999)

    Google Scholar 

  20. Lee, C.J., Park, Y.S., Kim, W.S., Lee, N.S., Kim, J.M., Choi, Y.G.: Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition. Appl. Phys. Lett. 75, 1721–1723 (1999)

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support of the Ministry of Science and Technology and National Science Council of MOST 103-2221-E-244-018 and 103-2514-S-218-001, NSC 102-2511-S-244-001 and NSC 102-2221-E-244-019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Ching Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lin, CY., Pan, JL., Wu, CC., Chang, WC. (2016). Study of Nickel Catalysts Deposited by Using the Electroless Plating Method and Growth of the Multiwall Carbon Nanotubes. In: Juang, J. (eds) Proceedings of the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES2014). Lecture Notes in Electrical Engineering, vol 345. Springer, Cham. https://doi.org/10.1007/978-3-319-17314-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17314-6_47

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17313-9

  • Online ISBN: 978-3-319-17314-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics