Skip to main content

DNA for Non-nucleic Acid Sensing

  • Chapter
RNA and DNA Diagnostics

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The structure of DNA, encoded on four bases, allows to generate a considerable number of unique markers, even considering very short sequences composed of n nucleotides leading to 4n different combinations. The possibility of synthesizing DNA sequences in vitro at low cost and in large quantities, coupled with well-known strategies of strand functionalization with groups having optical, magnetic or redox properties, allows to consider DNA not simply as a tool for detection of target nucleotide sequences but as versatile label in many biomolecular recognition event transduction schemes. This ability is strongly enhanced by modern DNA amplification approaches. Furthermore, iterative selection methods (SELEX) have achieved a high level of performance, reliability and sophistication, enabling the use of short DNA sequences also as selective binding element for the detection of an increasing number of analytes ranging from proteins to small organic molecules, such as pollutants and endocrine disruptors. This chapter highlights the progress made in the areas of analytical sciences through the use of nucleic acid sequences that act either only as an amplifiable label or both as a recognition element and as a marker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams M, Jackson SR, Haselton FR et al (2012) Design, synthesis, and characterization of nucleic-acid-functionalized gold surfaces for biomarker detection. Langmuir 28:1068–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akter F, Mie M, Kobatake E (2011) Immuno-rolling circle amplification using a multibinding fusion protein. Anal Biochem 416:174–179

    Article  CAS  PubMed  Google Scholar 

  • Akter F, Mie M, Grimm S et al (2012) Detection of antigens using a protein−DNA chimera developed by enzymatic covalent bonding with phiX gene A. Anal Chem 84:5040–5046

    Article  CAS  PubMed  Google Scholar 

  • Campolongo MJ, Tan SJ, Xu J et al (2010) DNA nanomedicine: engineering DNA as a polymer for therapeutic and diagnostic applications. Adv Drug Deliv Rev 62:606–616

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Dhumpa R, Bang DD et al (2010) Detection of avian influenza virus by fluorescent DNA barcode-based immunoassay with sensitivity comparable to PCR. Analyst 135:337–342

    Article  CAS  PubMed  Google Scholar 

  • Cao ZJ, Peng QW, Qiu X et al (2011) Highly sensitive chemiluminescence technology for protein detection using aptamer-based rolling circle amplification platform. J Pharm Anal 1:159–165

    Article  CAS  Google Scholar 

  • Challier L, Mavre F, Moreau J et al (2012) Simple and highly enantioselective electrochemical aptamer-based binding assay for trace detection of chiral compounds. Anal Chem 84:5415–5420

    Article  CAS  PubMed  Google Scholar 

  • Challier L, Miranda-Castro R, Marchal D et al (2013) Kinetic rotating droplet electrochemistry: a simple and versatile method for reaction progress kinetic analysis in microliter volumes. J Am Chem Soc 135:14215–14228

    Article  CAS  PubMed  Google Scholar 

  • Chang TL, Tsai CY, Sun CC et al (2007) Ultrasensitive electrical detection of protein using nanogap electrodes and nanoparticle-based DNA amplification. Biosens Bioelectron 22:3139–3145

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Zhuang HS (2009) Real-time immuno-PCR assay for detecting PCBs in soil samples. Anal Bioanal Chem 394:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Yan F, Ding L et al (2010) Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal Chem 82:3337–3342

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Ding S, Li Q et al (2012) A simple electrochemical aptasensor for ultrasensitive protein detection using cyclic target-induced primer extension. Biosens Bioelectron 36:12–17

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Zheng B, Wang M et al (2014a) A target-triggered strand displacement reaction cycle: the design and application in adenosine triphosphate sensing. Anal Biochem 446:69–75

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Zheng B, Wang M et al (2014b) Determination of adenosine triphosphate by a target inhibited catalytic cycle based on a strand displacement reaction. Anal Lett 47:478–491

    Article  CAS  Google Scholar 

  • Cho EJ, Yang L, Levy M et al (2005) Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J Am Chem Soc 127:2022–2023

    Article  CAS  PubMed  Google Scholar 

  • Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA 101:15275–15278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng K, Kong R, Wang H et al (2012) A universal amplified strategy for aptasensors: enhancing sensitivity through allostery-triggered enzymatic recycling amplification. Biosens Bioelectron 38:121–125

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci USA 92:4641–4645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Focke F, Haase I, Fischer M (2013) Loop-mediated isothermal amplification (LAMP): methods for plant species identification in food. J Agric Food Chem 61:2943–2949

    Article  CAS  PubMed  Google Scholar 

  • Freeman R, Girsh J, Jou AF et al (2012) Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem 84:6192–6198

    Article  CAS  PubMed  Google Scholar 

  • Gerasimova YV, Kolpashchikov DM (2014) Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev 43:6405–6438

    Article  CAS  PubMed  Google Scholar 

  • Goluch ED, Nam J-M, Georganopoulou DG et al (2006) A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6:1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Guo YC, Zhou YF, Zhang XE et al (2006) Phage display mediated immuno-PCR. Nucleic Acids Res 34:e62–e68

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heyduk T, Heyduk E (2002) Molecular beacons for detecting DNA binding proteins. Nat Biotechnol 20:171–176

    Article  CAS  PubMed  Google Scholar 

  • Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1:324–336

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Chen J, Zhao S et al (2013) Label-free colorimetric aptasensor based on nicking enzyme assisted signal amplification and DNAzyme amplification for highly sensitive detection of protein. Anal Chem 85:4423–4430

    Article  CAS  PubMed  Google Scholar 

  • Huang J, He Y, Yang X et al (2014) Split aptazyme-based catalytic molecular beacons for amplified detection of adenosine. Analyst 139:2994–2997

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Cheng S, Chen W et al (2012) Comparison of oligonucleotide-labeled antibody probe assays for prostate-specific antigen detection. Anal Biochem 424:1–7

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Ellington AD (2014) Diagnostic applications of nucleic acid circuits. Acc Chem Res 47:1825–1835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klussmann S (2006) The aptamer handbook: functional oligonucleotides and their applications. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Kotia RB, Li L, McGown LB (2000) Separation of nontarget compounds by DNA aptamers. Anal Chem 72:827–831

    Article  CAS  PubMed  Google Scholar 

  • Kuczius T, Becker K, Karch H et al (2009) High sensitivity detection of the glial fibrillary acidic protein as indicator for TSE risk material in meat products using an immuno-PCR. Mol Nutr Food Res 53:1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Jeon CH, Ahn SJ et al (2014) Highly stable colorimetric aptamer sensors for detection of ochratoxin A through optimizing the sequence with the covalent conjugation of hemin. Analyst 139:1622–1627

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ji X, Song W et al (2013) Design of a sensitive aptasensor based on magnetic microbeads-assisted strand displacement amplification and target recycling. Anal Chim Acta 770:147–152

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Cui L, Huang Y et al (2014) Carbon nanoparticle-protected aptamers for highly sensitive and selective detection of biomolecules based on nuclease-assisted target recycling signal amplification. Chem Commun 50:7646–7648

    Article  CAS  Google Scholar 

  • Linck L, Reiß E, Bier F et al (2012) Direct labeling rolling circle amplification as a straightforward signal amplification technique for biodetection formats. Anal Methods 4:1215–1220

    Article  CAS  Google Scholar 

  • Liu X, Freeman R, Willner I (2012) Amplified fluorescence aptamer-based sensors using exonuclease III for the regeneration of the analyte. Chem Eur J 18:2207–2211

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wang Y, Zhang C et al (2013) Homogeneous electrochemical aptamer-based ATP assay with signal amplification by exonuclease III assisted target recycling. Chem Commun 49:2335–2337

    Article  CAS  Google Scholar 

  • Lu C-H, Li J, Lin M-H et al (2010) Amplified aptamer-based assay through catalytic recycling of the analyte. Angew Chem Int Ed 49:8454–8457

    Article  CAS  Google Scholar 

  • Lu L, Liu B, Zhao Z et al (2012) Ultrasensitive electrochemical immunosensor for HE4 based on rolling circle amplification. Biosens Bioelectron 33:216–221

    Article  CAS  PubMed  Google Scholar 

  • Ma DL, Xu T, Chan DSH et al (2011) A highly selective, label-free, homogenous luminescent switch-on probe for the detection of nanomolar transcription factor NF-kappaB. Nucleic Acids Res 39:e67–e75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McManus SA, Li Y (2013) Turning a kinase deoxyribozyme into a sensor. J Am Chem Soc 135:7181–7186

    Article  CAS  PubMed  Google Scholar 

  • Moreau J, Challier L, Lalaoui N et al (2014) Rational design of a redox-labeled chiral target for an enantioselective aptamer-based electrochemical binding assay. Chem Eur J 20:2953–2959

    Article  CAS  PubMed  Google Scholar 

  • Mullenix MC, Sivakamasundari R, Feaver WJ et al (2002) Rolling circle amplification improves sensitivity in multiplex immunoassays on microspheres. Clin Chem 48:1855–1858

    CAS  Google Scholar 

  • Nam J-M, Park S-J, Mirkin CA (2002) Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc 124:3820–3821

    Article  CAS  PubMed  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ou LJ, Liu SJ, Chu X et al (2009) DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein. Anal Chem 81:9664–9673

    Article  CAS  PubMed  Google Scholar 

  • Pei X, Zhang B, Tang J et al (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels. Anal Chim Acta 758:1–18

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Cao Z, Lau C et al (2011) Aptamer-barcode based immunoassay for the instantaneous derivatization chemiluminescence detection of IgE coupled to magnetic beads. Analyst 136:140–147

    Article  CAS  PubMed  Google Scholar 

  • Peng K, Zhao H, Yuan Y et al (2014) Mediator-free triple-enzyme cascade electrocatalytic aptasensor with exonuclease-assisted target recycling and hybridization chain reaction amplification. Biosens Bioelectron 55:366–371

    Article  CAS  PubMed  Google Scholar 

  • Pourhassan-Moghaddam M, Rahmati-Yamchi M, Akbarzadeh A et al (2013) Protein detection through different platforms of immuno-loop-mediated isothermal amplification. Nanoscale Res Lett 8:485–496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qian L, Winfree E, Bruck J (2011) Neural network computation with DNA strand displacement cascades. Nature 475:368–372

    Article  CAS  PubMed  Google Scholar 

  • Ravan H, Yazdanparast R (2012) Development and evaluation of a loop-mediated isothermal amplification method in conjunction with an enzyme-linked immunosorbent assay for specific detection of Salmonella serogroup D. Anal Chim Acta 733:64–70

    Article  CAS  PubMed  Google Scholar 

  • Ravan H, Yazdanparast R (2013) Loop region-specific oligonucleotide probes for loop-mediated isothermal amplification-enzyme-linked immunosorbent assay truly minimize the instrument needed for detection process. Anal Biochem 439:102–108

    Article  CAS  PubMed  Google Scholar 

  • Ruta J, Ravelet C, Baussanne I et al (2007) Aptamer-based enantioselective competitive binding assay for the trace enantiomer detection. Anal Chem 79:4716–4719

    Article  CAS  PubMed  Google Scholar 

  • Ruta J, Perrier S, Ravelet C et al (2009) Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection. Anal Chem 81:7468–7473

    Article  CAS  PubMed  Google Scholar 

  • Sano T, Smith CL, Cantor CR (1992) Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258:120–122

    Article  CAS  PubMed  Google Scholar 

  • Song W, Zhu K, Cao Z et al (2012) Hybridization chain reaction-based aptameric system for the highly selective and sensitive detection of protein. Analyst 137:1396–1401

    Article  CAS  PubMed  Google Scholar 

  • Stoeva SI, Lee JS, Smith JE et al (2006) Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J Am Chem Soc 128:8378–8379

    Article  CAS  PubMed  Google Scholar 

  • Suess B (2010) Riboswitches: new aspects of an old story. RNA Biol 7:65–66

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Guo Q, Zhao X et al (2014) Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification. Biosens Bioelectron 51:255–260

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Hou L, Tang D et al (2012a) Hemin/G-quadruplex-based DNAzyme concatamers as electrocatalysts and biolabels for amplified electrochemical immunosensing of IgG1w. Chem Commun 48:8180–8182

    Article  CAS  Google Scholar 

  • Tang L, Liu Y, Ali MM et al (2012b) Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem 84:4711–4717

    Article  CAS  PubMed  Google Scholar 

  • Tong P, Zhao WW, Zhang L et al (2012) Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification. Biosens Bioelectron 33:146–151

    Article  CAS  PubMed  Google Scholar 

  • Travascio P, Lia Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 5:505–517

    Article  CAS  PubMed  Google Scholar 

  • Van Ness J, Van Ness LK, Galas DJ (2003) Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci USA 100:4504–4509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang JK, Li TX, Guo XY et al (2005) Exonuclease III protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Res 33:e23

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang F, Freage L, Ron Orbach R et al (2013a) Autonomous replication of nucleic acids by polymerization/nicking enzyme/DNAzyme cascades for the amplified detection of DNA and the aptamer−Cocaine Complex. Anal Chem 85:8196–8203

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zheng H, Gao X et al (2013b) A label-free ultrasensitive electrochemical aptameric recognition system for protein assay based on hyperbranched rolling circle amplification. Chem Commun 49:11418–11420

    Article  CAS  Google Scholar 

  • Wang F, Lu C-H, Willner I (2014) From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 114:2881–2941

    Article  CAS  PubMed  Google Scholar 

  • Willner I, Shlyahovsky B, Zayats M et al (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Wu ZS, Zhou H, Zhang SB et al (2010) Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification. Anal Chem 82:2282–2289

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Chai Y, Yuan Y et al (2014) Development of an electrochemical method for Ochratoxin A detection based on aptamer and loop-mediated isothermal amplification. Biosens Bioelectron 55:324–329

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Cai LL, Kong DM et al (2011) General sensor design strategy based on G-quadruplex-hemin DNAzymes. Anal Lett 44:2582–2592

    Article  CAS  Google Scholar 

  • Xue L, Zhou X, Xing D (2012a) Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification. Anal Chem 84:3507–3513

    Article  CAS  PubMed  Google Scholar 

  • Xue Q, Wang L, Jiang W (2012b) A versatile platform for highly sensitive detection of protein: DNA enriching magnetic nanoparticles based rolling circle amplification immunoassay. Chem Commun 33:3897–4020

    Google Scholar 

  • Xue Q, Wang Z, Wang L et al (2012c) Sensitive detection of proteins using assembled cascade fluorescent DNA nanotags based on rolling circle amplification. Bioconjug Chem 23:734–739

    Article  CAS  PubMed  Google Scholar 

  • Xue Q, Zhang G, Wang L et al (2014) Aptamer-based exonuclease protection and enzymatic recycling cleavage amplification homogeneous assay for the highly sensitive detection of thrombin. Analyst 139:3167–3173

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Su S, He S et al (2012) Nano rolling-circle amplification for enhanced SERS hot spots in protein microarray analysis. Anal Chem 84:9139–9145

    CAS  PubMed  Google Scholar 

  • Yan L, Zhou J, Zheng Y et al (2014) Isothermal amplified detection of DNA and RNA. Mol BioSyst 10:970–1003

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Fung CW, Cho EJ et al (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79:3320–3329

    Article  CAS  PubMed  Google Scholar 

  • Yin P, Choi HMT, Calvert CR et al (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322

    Article  CAS  PubMed  Google Scholar 

  • Yin H-Q, Jia M-X, Shi L-J et al (2011) Nanoparticle-based bio-barcode assay for the detection of bluetongue virus. J Virol Methods 178:225–228

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Gou X, Yuana R et al (2011) Electrochemical aptasensor based on the dual-amplification of G-quadruplex horseradish peroxidase-mimicking DNAzyme and blocking reagent-horseradish peroxidase. Biosens Bioelectron 26:4236–4240

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Yuan R, Chai Y et al (2012) Hemin/G-quadruplex simultaneously acts as NADH oxidase and HRP-mimicking DNAzyme for simple, sensitive pseudobienzyme electrochemical detection of thrombin. Chem Commun 48:4621–4623

    Article  CAS  Google Scholar 

  • Yuan Y, Chai Y, Yuan R et al (2013) An ultrasensitive electrochemical aptasensor with autonomous assembly of hemin-G-quadruplex DNAzyme nanowires for pseudo triple-enzyme cascade electrocatalytic amplification. Chem Commun 49:7328–7330

    Article  CAS  Google Scholar 

  • Zhang DY, Turberfield AJ, Yurk B et al (2007a) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 5883:1121–1125

    Article  CAS  Google Scholar 

  • Zhang D, Carr DJ, Alocilja EC (2009) Fluorescent bio-barcode DNA assay for the detection of Salmonella enterica serovar Enteritidis. Biosens Bioelectron 24:1377–1381

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ren J, Pan K et al (2010) Detection of gastric carcinoma-associated MG7-Ag by serum immuno-PCR assay in a high-risk Chinese population, with implication for screening. Int J Cancer 126:469–473

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Fang C, Zhang S (2011) Ultrasensitive electrochemical analysis of two analytes by using an autonomous DNA machine that works in a two-cycle mode. Chem Eur J 17:7531–7537

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Liu B, Tang D et al (2012a) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hu J, Zhang C-Y (2012b) Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay. Anal Chem 84:9544–9549

    CAS  PubMed  Google Scholar 

  • Zhang J, Chai Y, Yuan R et al (2013) A novel electrochemical aptasensor for thrombin detection based on the hybridization chain reaction with hemin/G-quadruplex DNAzyme-signal amplification. Analyst 138:4558–4564

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Yan J, Wang D et al (2013a) Carbon nanotubes multifunctionalized by rolling circle amplification and their application for highly sensitive detection of cancer markers. Small 15:2595–2601

    Article  CAS  Google Scholar 

  • Zhao M, Zhuo Y, Chai Y et al (2013b) Dual signal amplification strategy for the fabrication of an ultrasensitive electrochemiluminescence aptasensor. Analyst 138:6639–6644

    Article  CAS  PubMed  Google Scholar 

  • Zheng AX, Wang JR, Li J et al (2012a) Enzyme-free fluorescence aptasensor for amplification detection of human thrombin via target-catalyzed hairpin assembly. Biosens Bioelectron 36:217–221

    Article  CAS  PubMed  Google Scholar 

  • Zheng AX, Wang JR, Li J et al (2012b) Nicking enzyme based homogeneous aptasensors for amplification detection of protein. Chem Commun 48:374–376

    Article  CAS  Google Scholar 

  • Zheng J, Hu Y, Bai J et al (2014) Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes. Anal Chem 86:2205–2212

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Ou LJ, Chu X et al (2007) Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein. Anal Chem 79:7492–7500

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhuang J, Tang J et al (2013) Dual-nanogold-linked bio-barcodes with superstructures for in situ amplified electronic detection of low-abundance proteins. Mol BioSyst 9:622–625

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Gong X, Xiang Y et al (2014) Target-triggered quadratic amplification for label-free and sensitive visual detection of cytokines based on hairpin aptamer DNAzyme probes. Anal Chem 86:953–958

    Article  CAS  PubMed  Google Scholar 

  • Zhuang HS, Zhou C (2009) Determination of anthracene by real-time immune-polymerase chain reaction assay. Anal Chim Acta 633:278–282

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Noel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Noel, V., Piro, B., Reisberg, S. (2015). DNA for Non-nucleic Acid Sensing. In: Erdmann, V., Jurga, S., Barciszewski, J. (eds) RNA and DNA Diagnostics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-17305-4_4

Download citation

Publish with us

Policies and ethics