Skip to main content

Mechanochemical Sensing

  • Chapter

Part of the RNA Technologies book series (RNATECHN)

Abstract

In this chapter, we discuss a new sensing strategy that exploits mechanochemical principles of biological molecules, DNA in particular. Mechanochemical coupling reflects the interaction between chemical bonds in a molecule and mechanical stress experienced by the molecule. It is a key subject in the newly emerged field, mechanochemistry, which has led to a number of exotic applications in materials chemistry. However, the potential of the mechanochemical principles in the chemical sensing has not been fully recognized and exploited. Using force-based single-molecule techniques, such as optical tweezers, magnetic tweezers, or AFM, the tension in individual DNA templates can be followed in a mechanochemical sensing setup. When the template recognizes an analyte, the accompanied change in the tension of the template can be monitored in real time. This chapter discusses the general principle of the mechanochemical sensing, the pros and cons of this new sensing scheme, as well as future prospects for this strategy.

Keywords

  • Mechanochemical sensing
  • DNA nanotechnology
  • Mechanical affinity
  • Single-molecule methods
  • Mechanoanalytical chemistry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-17305-4_12
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-17305-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Alaiwi WAA, Lo ST, Nauli SM (2009) Primary cilia: highly sophisticated biological sensors. Sensors 9:7003–7020

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Alberti P, Bourdoncle A, Sacca B et al (2006) DNA nanomachines and nanostructures involving quadruplexes. Org Biomol Chem 4:3383–3391

    CAS  PubMed  CrossRef  Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm JE et al (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    CAS  PubMed  CrossRef  Google Scholar 

  • Balkenende DWR, Coulibaly S, Balog S et al (2014) Mechanochemistry with metallosupramolecular polymers. J Am Chem Soc 136:10493–10498

    CAS  PubMed  CrossRef  Google Scholar 

  • Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2:715–725

    CAS  PubMed  CrossRef  Google Scholar 

  • Beissenhirtz MK, Willner I (2006) DNA-based machines. Org Biomol Chem 4:3392–3401

    CAS  PubMed  CrossRef  Google Scholar 

  • Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105:2921–2948

    CAS  PubMed  CrossRef  Google Scholar 

  • Binnig G, Rohrer H (1983) Scanning tunneling microscopy. Surf Sci 126:236–244

    CAS  CrossRef  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    PubMed  CrossRef  Google Scholar 

  • Black AL, Lenhardt JM, Craig SL (2011) From molecular mechanochemistry to stress-responsive materials. J Mater Chem 21:1655–1663

    CAS  CrossRef  Google Scholar 

  • Calderone CT, Liu DR (2004) Nucleic-acid-templated synthesis as a model system for ancient translation. Curr Opin Chem Biol 8:645–653

    CAS  PubMed  CrossRef  Google Scholar 

  • Caruso MM, Davis DA, Shen Q et al (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755–5798

    CAS  PubMed  CrossRef  Google Scholar 

  • Chandran H, Rangnekar A, Shetty G et al (2013) An autonomously self-assembling dendritic DNA nanostructure for target DNA detection. Biotechnol J 8:221–227

    CAS  PubMed  CrossRef  Google Scholar 

  • Clausen-Schaumann H, Seitz M, Krautbauer R et al (2000) Force spectroscopy with single bio-molecules. Curr Opin Chem Biol 4:524–530

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig SL (2012) Mechanochemistry: a tour of force. Nature 487:176–177

    CAS  PubMed  CrossRef  Google Scholar 

  • Davenport RJ, Wuite GJL, Landick R et al (2000) Single-molecule study of transcriptional pausing and arrest by E-coli RNA polymerase. Science 287:2497–2500

    CAS  PubMed  CrossRef  Google Scholar 

  • Dhakal S, Schonhoft JD, Koirala D et al (2010) Coexistence of an ILPR i-motif and a partially folded structure with comparable mechanical stability revealed at the single-molecule level. J Am Chem Soc 132:8991–8997

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA 101:15275–15278

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Douglas SM, Dietz H, Liedl T et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    CAS  PubMed  CrossRef  Google Scholar 

  • Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199

    CAS  PubMed  CrossRef  Google Scholar 

  • Fazio T, Visnapuu M-L, Wind S et al (2008) DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging. Langmuir 24:10524–10531

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Fritz J, Baller MK, Lang HP et al (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318

    CAS  PubMed  CrossRef  Google Scholar 

  • Gennerich A, Vale RD (2009) Walking the walk: how kinesin and dynein coordinate their steps. Curr Opin Cell Biol 21:59–67

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Han D, Pal S, Nangreave J et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346

    CAS  PubMed  CrossRef  Google Scholar 

  • Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693

    CAS  CrossRef  Google Scholar 

  • Kean ZS, Craig SL (2012) Mechanochemical remodeling of synthetic polymers. Polymer 53:1035–1048

    CAS  CrossRef  Google Scholar 

  • Kean ZS, Niu Z, Hewage GB et al (2013) Stress-responsive polymers containing cyclobutane core mechanophores: reactivity and mechanistic insights. J Am Chem Soc 135:13598–13604

    CAS  PubMed  CrossRef  Google Scholar 

  • Keller D, Bustamante C (2000) The mechanochemistry of molecular motors. Biophys J 78:541–556

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Koirala D, Dhakal S, Ashbridge B et al (2011a) A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 3:782–787

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Koirala D, Yu Z, Dhakal S et al (2011b) Detection of single nucleotide polymorphism using tension-dependent stochastic behavior of a single-molecule template. J Am Chem Soc 133:9988–9991

    CAS  PubMed  CrossRef  Google Scholar 

  • Koirala D, Yangyuoru PM, Mao H (2013) Mechanical affinity as a new metrics to evaluate binding events. Rev Anal Chem 32:197–208

    CAS  CrossRef  Google Scholar 

  • Koirala D, Shrestha P, Emura T et al (2014) Single-molecule mechanochemical sensing using DNA origami nanostructures. Angew Chem Int Ed Engl 53:8137–8141

    CAS  PubMed  CrossRef  Google Scholar 

  • Kolpashchikov DM, Stojanovic MN (2005) Boolean control of aptamer binding states. J Am Chem Soc 127:11348–11351

    CAS  PubMed  CrossRef  Google Scholar 

  • Krishnan Y, Bathe M (2012) Designer nucleic acids to probe and program the cell. Trends Cell Biol 22:624–633

    CAS  PubMed  CrossRef  Google Scholar 

  • Liao J-C, Jeong Y-J, Kim D-E et al (2005) Mechanochemistry of T7 DNA Helicase. J Mol Biol 350:452–475

    CAS  PubMed  CrossRef  Google Scholar 

  • Lin C, Liu Y, Yan H (2007) Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing. Nano Lett 7:507–512

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Lord JM, Bunc CM, Brown G (1988) The role of protein phosphorylation in control of cell growth and differentiation. Br J Cancer 58:549–555

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Luchette P, Abiy N, Mao H (2007) Microanalysis of clouding process at the single droplet level. Sens Actuators B Chem 128:154–160

    CAS  CrossRef  Google Scholar 

  • Maldonado CR, Touceda-Varela A, Jones AC et al (2011) A turn-on fluorescence sensor for cyanide from mechanochemical reactions between quantum dots and copper complexes. Chem Commun 47:11700–11702

    CAS  CrossRef  Google Scholar 

  • Mao H, Luchette P (2008) An integrated laser-tweezers instrument for microanalysis of individual protein aggregates. Sens Actuators B 129:764–771

    CAS  CrossRef  Google Scholar 

  • Mao C, LaBean TH, Reif JH et al (2000) Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407:493–496

    CAS  PubMed  CrossRef  Google Scholar 

  • Mavroidis C, Dubey A, Yarmush ML (2004) Molecular machines. Annu Rev Biophys Biomed Eng 6:363–395

    CAS  CrossRef  Google Scholar 

  • May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506

    CAS  PubMed  CrossRef  Google Scholar 

  • Michelotti N, Johnson-Buck A, Manzo AJ et al (2012) Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology. WIREs Nanomed Nanobiotechnol 4:139–152

    CAS  CrossRef  Google Scholar 

  • Modi S, Swetha MG, Goswami D et al (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4:325–330

    CAS  PubMed  CrossRef  Google Scholar 

  • Nguyen T-H, Steinbock LJ, Butt H-J et al (2011) Measuring single small molecule binding via rupture forces of a split aptamer. J Am Chem Soc 133:2025–2027

    CAS  PubMed  CrossRef  Google Scholar 

  • Niemeyer CM (1997) DNA as a material for nanotechnology. Angew Chem Int Ed 36:585–587

    CAS  CrossRef  Google Scholar 

  • Pinheiro AV, Han D, Shih WM et al (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Porchetta A, Vallée-Bélisle A, Plaxco KW et al (2012) Using distal-site mutations and allosteric inhibition to tune, extend, and narrow the useful dynamic range of aptamer-based sensors. J Am Chem Soc 134:20601–20604

    CAS  PubMed  CrossRef  Google Scholar 

  • Rayment I, Holden HM, Whittaker M et al (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    CAS  PubMed  CrossRef  Google Scholar 

  • Rief M, Oesterhelt F, Heymann B et al (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297

    CAS  PubMed  CrossRef  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    CAS  PubMed  CrossRef  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    CAS  PubMed  CrossRef  Google Scholar 

  • Schnitzer MJ, Visscher K, Block SM (2000) Force production by single kinesin motors. Nat Cell Biol 2:718–723

    CAS  PubMed  CrossRef  Google Scholar 

  • Seeman NC (2003) DNA in a material world. Nature 421:427–431

    PubMed  CrossRef  Google Scholar 

  • Seeman NC (2005) From genes to machines: DNA nanomechanical devices. Trends Biochem Sci 30:119–125

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Sefah K, Shangguan D, Xiong X et al (2010) Development of DNA aptamers using Cell-SELEX. Nat Protocols 5:1169–1185

    CAS  CrossRef  Google Scholar 

  • Shekhar S, Cambi A, Figdor CG et al (2012) A method for spatially resolved local intracellular mechanochemical sensing and organelle manipulation. Biophys J 103:395–404

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Silverman SK (2010) DNA as a versatile chemical component for catalysis, encoding, and stereocontrol. Angew Chem Int Ed 49:7180–7201

    CAS  CrossRef  Google Scholar 

  • Simmel FC, Dittmer WU (2005) DNA nanodevices. Small 1:284–299

    CAS  PubMed  CrossRef  Google Scholar 

  • Smith SB, Cui YJ, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799

    CAS  PubMed  CrossRef  Google Scholar 

  • Strick TR, Allemand J-F, Bensimon D et al (1996) The elasticity of a single supercoiled DNA molecule. Science 271:1835–1837

    CAS  PubMed  CrossRef  Google Scholar 

  • Svoboda K, Block SM (1994) Force and velocity measured for single kinesin molecules. Cell 77:773–784

    CAS  PubMed  CrossRef  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment—RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249:505–510

    CAS  PubMed  CrossRef  Google Scholar 

  • Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189

    CAS  PubMed  CrossRef  Google Scholar 

  • Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang MD, Schnitzer MJ, Yin H et al (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282:902–907

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang H, Yang R, Yang L et al (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Wang X, Lou X, Wang Y et al (2010) QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants. Biosens Bioelectron 25:1934–1940

    CAS  PubMed  CrossRef  Google Scholar 

  • Weder C (2009) Mechanochemistry: polymers react to stress. Nature 459:45–46

    CAS  PubMed  CrossRef  Google Scholar 

  • Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485:623–626

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • White SR, Sottos NR, Geubelle PH et al (2001) Autonomic healing of polymer composites. Nature 409:794–797

    CAS  PubMed  CrossRef  Google Scholar 

  • Wilner OI, Willner I (2012) Functionalized DNA nanostructures. Chem Rev 112:2528–2556

    CAS  PubMed  CrossRef  Google Scholar 

  • Woodside MT, Anthony PC, Behnke-Parks WM et al (2006) Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science 314:1001–1004

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Wuite GJL, Smith SB, Young M et al (2000) Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404:103–106

    CAS  PubMed  CrossRef  Google Scholar 

  • Xing H, Wong NY, Xiang Y et al (2012) DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 16:429–435

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Yangyuoru PM, Dhakal S, Yu Z et al (2012) Single-molecule measurements of the binding between small molecules and DNA aptamers. Anal Chem 84:5298–5303

    CAS  PubMed  CrossRef  Google Scholar 

  • Yu Z, Schonhoft JD, Dhakal S et al (2009) ILPR G-quadruplexes formed in seconds demonstrate high mechanical stabilities. J Am Chem Soc 131:1876–1882

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103–113

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131:17303–17314

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhu C, Bao G, Wang N (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 2:189–226

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgment

HM thanks NSF (CHE-1026532) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanbin Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shrestha, P., Mandal, S., Mao, H. (2015). Mechanochemical Sensing. In: Erdmann, V., Jurga, S., Barciszewski, J. (eds) RNA and DNA Diagnostics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-17305-4_12

Download citation