Fractional Repetition and Erasure Batch Codes

Part of the CIM Series in Mathematical Sciences book series (CIMSMS, volume 3)

Abstract

Batch codes are a family of codes that represent a distributed storage system (DSS) of n nodes so that any batch of t data symbols can be retrieved by reading at most one symbol from each node. Fractional repetition codes are a family of codes for DSS that enable efficient uncoded repairs of failed nodes. In this work these two families of codes are combined to obtain fractional repetition batch (FRB) codes which provide both uncoded repairs and parallel reads of subsets of stored symbols. In addition, new batch codes which can tolerate node failures are considered. This new family of batch codes is called erasure combinatorial batch codes (ECBCs). Some properties of FRB codes and ECBCs and examples of their constructions based on transversal designs and affine planes are presented.

Keywords

Fractional repetition codes Batch codes Transversal designs Affine planes 

References

  1. 1.
    Anderson, I.: Combinatorial Designs and Tournaments. Clarendon Press, Oxford (1997)MATHGoogle Scholar
  2. 2.
    Bhattacharya, S., Ruj, S., Roy, B.K.: Combinatorial batch codes: a lower bound and optimal constructions. Adv. Math. Commun. 3(1), 165–174 (2012). doi:10.3934/amc.2012.6.165MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bujtás, C., Tuza, Z.: Optimal batch codes: Many items or low retrieval requirement. Adv. Math. Commun. 5(3), 529–541 (2011). doi:10.3934/amc.2011.5.529 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dimakis, A., Godfrey, P., Wu, Y., Wainwright, M., Ramchandran, K.: Network coding for distributed storage systems. IEEE Trans. Inf. Theory 56(9), 4539–4551 (2010). doi:10.1109/TIT.2010.2054295 CrossRefGoogle Scholar
  5. 5.
    Dimakis, A.G., Ramchandran, K., Wu, Y., Suh, C.: A survey on network codes for distributed storage. Proc. IEEE 99, 476–489 (2011)CrossRefGoogle Scholar
  6. 6.
    El Rouayheb, S., Ramchandran, K.: Fractional repetition codes for repair in distributed storage systems. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Urbana-Champaign, pp. 1510–1517 (2010)Google Scholar
  7. 7.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applications. In: Proceedings of the 36th Annual ACM Symposium on the Theory of computing (STOC’04), Chicago, pp. 262–271 (2004). doi:10.1145/1007352.1007396Google Scholar
  8. 8.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1978)Google Scholar
  9. 9.
    Olmez, O., Ramamoorthy, A.: Repairable replication-based storage systems using resolvable designs. In: Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, pp. 1174–1181 (2012). doi:10.1109/Allerton.2012.6483351Google Scholar
  10. 10.
    Paterson, M.B., Stinson, D.R., Wei, R.: Combinatorial batch codes. Adv. Math. Commun. 3(1), 13–27 (2009). doi:10.3934/amc.2009.3.13MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Pawar, S., Noorshams, N., El Rouayheb, S., Ramchandran, K.: Dress codes for the storage cloud: simple randomized constructions. In: Proceedings of the 2011 IEEE International Symposium on Information Theory (ISIT 2011), St. Petersburg, pp. 2338–2342 (2011). doi:10.1109/ISIT.2011.6033980
  12. 12.
    Rashmi, K.V., Shah, N., Kumar, P.: Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction. IEEE Trans. Inf Theory 57(8), 5227–5239 (2011). doi:10.1109/TIT.2011.2159049 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shah, N., Rashmi, K.V., Kumar, P., Ramchandran, K.: Distributed storage codes with repair-by-transfer and nonachievability of interior points on the storage-bandwidth tradeoff. IEEE Trans. Inf. Theory 58(3), 1837–1852 (2012). doi:10.1109/TIT.2011.2173792 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Silberstein, N., Etzion, T.: Optimal fractional repetition codes (2014). arXiv:1401.4734
  15. 15.
    Silberstein, N., Gál, A.: Optimal combinatorial batch codes based on block designs (2013). Accepted for publication in Designs, Codes and Cryptography (Springer) http://dx.doi:10.1007/s10623-014-0007-9Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations