Therapeutic Impact of Immune Responses in Cancer

Part of the Resistance to Targeted Anti-Cancer Therapeutics book series (RTACT, volume 6)


Therapeutic targeted oncoimmunology has a long history reaching back to the nineteenth century and represents the basis of modern tumor immunology. Cell biological and molecular genetic techniques have uncovered crucial cellular and molecular mechanisms underlying effective cancer immunotherapies used in the clinic. To illustrate the scientific way that led to actual insights into the molecular and cellular approaches realized in recent cancer therapies, this chapter introduces into the history of oncoimmunology. Experimental findings of adoptive cell transfer-based cancer therapy are summarized under functional, immunological aspects. An actual overview of the antitumor prosperity of all genetically engineered tumor cells expressing recombinant cytokines which were characterized by animal experiments is given. The application of antigen-presenting cells which are triple transgenic for immune stimulatory cytokines, tumor specific antigens, and the correlated major histocompatibility complex class I necessary for tumor antigen presentation is explained exemplarily. A recent experimental animal model characterizing critical parameters for preconditioning the host prior to ACT of transgenic T cells and essential therapeutic conditions is described.


Adoptive cell transfer Animal model Cytokine Effector cells Immune evasion Immune surveillance Transgene Tumor-specific antigen 



Adoptive cell transfer


Dendritic cells


Granulocyte macrophage colony stimulating factor


Hematological stem cell transplantation





LAK cells

Lymphokine activated killer cells



NK cells

Natural killer cells


Major histocompatibility complex


Moloney murine leukemia virus


Mouse mammary tumor virus


Recombination-activating gene-2


Severe combined immunodeficiency


Tumor-infiltrating leukocytes


Tumor-associated antigens


Cytotoxic T cells

TH cells

T Helper cells

TH2 cells

TH type 2

TSCM cells

T memory cells

TCM cells

T central memory cells

TEM cells

T effector memory cells


Tumor-specific antigens



Many thanks for helpful discussions to A. Bette and Prof. R. Mandic.

No Conflict Statement

No potential conflicts of interest were disclosed.


  1. 1.
    Coley WB. II. Contribution to the knowledge of sarcoma. Ann Surg. 1891;14:199–220.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3:1–48.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Coley WB. II. Injury as a causative factor in cancer (continued). Ann Surg. 1911;53:615–50.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Coley WB. I. Injury as a causative factor in cancer. Ann Surg. 1911;53:449–88.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Ehrlich P. Über den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd. 1909;5:273–90.Google Scholar
  6. 6.
    Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957;18:769–78.PubMedGoogle Scholar
  7. 7.
    Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1–27.PubMedGoogle Scholar
  8. 8.
    Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J. 1957;1:779–86.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Burnet M. Immunological factors in the process of carcinogenesis. Br Med Bull. 1964;20:154–8.PubMedGoogle Scholar
  10. 10.
    Sanford KK, Likely GD, Earle WR. The development of variations in transplantability and morphology within a clone of mouse fibroblasts transformed to sarcoma-producing cells in vitro. J Natl Cancer Inst. 1954;15:215–37.PubMedGoogle Scholar
  11. 11.
    Thomas L. Discussion. In: Lawrence HS, editor. Cellular and humoral aspects of the hypersensitive state. New York: Harper Lawrence, H. S.; 1959. p. 529–30.Google Scholar
  12. 12.
    Old LJ, Boyse EA. Immunology of experimental tumors. Annu Rev Med. 1964;15:167–86.PubMedGoogle Scholar
  13. 13.
    Snyder MA, Bishop JM. A mutation at the major phosphotyrosine in pp60v-src alters oncogenic potential. Virology. 1984;136:375–86.PubMedGoogle Scholar
  14. 14.
    Mullen CA, Urban JL, Van Waes C, Rowley DA, Schreiber H. Multiple cancers. Tumor burden permits the outgrowth of other cancers. J Exp Med. 1985;162:1665–82.PubMedGoogle Scholar
  15. 15.
    Mullen CA, Schreiber H. Tumor growth and evasion of immune destruction: UV-induced tumors as a model. Surv Immunol Res. 1985;4:264–70.PubMedGoogle Scholar
  16. 16.
    Rooney CM, Rowe M, Wallace LE, Rickinson AB. Epstein-Barr virus-positive Burkitt’s lymphoma cells not recognized by virus-specific T-cell surveillance. Nature. 1985;317:629–31.PubMedGoogle Scholar
  17. 17.
    Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.PubMedGoogle Scholar
  18. 18.
    Virchow R, Virchow R. Aetiologie der neoplastischen Geschwulste/Pathogenie der neoplastischen Geschwulste. Die Krankhaften Geschwulste. Berlin: August Hirschwald; 1863.Google Scholar
  19. 19.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.PubMedGoogle Scholar
  20. 20.
    Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–48.PubMedGoogle Scholar
  21. 21.
    Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.PubMedGoogle Scholar
  22. 22.
    MacKie RM, Reid R, Junor B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med. 2003;348:567–8.PubMedGoogle Scholar
  23. 23.
    Merigan TC, Sikora K, Breeden JH, Levy R, Rosenberg SA. Preliminary observations on the effect of human leukocyte interferon in non-Hodgkin’s lymphoma. N Engl J Med. 1978;299:1449–53.PubMedGoogle Scholar
  24. 24.
    Priestman TJ. Interferon: an anti-cancer agent? Cancer Treat Rev. 1979;6:223–37.PubMedGoogle Scholar
  25. 25.
    Foon KA, Sherwin SA, Abrams PG, Longo DL, Fer MF, Stevenson HC, Ochs JJ, Bottino GC, Schoenberger CS, Zeffren J, et al. Treatment of advanced non-Hodgkin’s lymphoma with recombinant leukocyte A interferon. N Engl J Med. 1984;311:1148–52.PubMedGoogle Scholar
  26. 26.
    Gutterman JU, Blumenschein GR, Alexanian R, Yap HY, Buzdar AU, Cabanillas F, Hortobagyi GN, Hersh EM, Rasmussen SL, Harmon M, Kramer M, Pestka S. Leukocyte interferon-induced tumor regression in human metastatic breast cancer, multiple myeloma, and malignant lymphoma. Ann Intern Med. 1980;93:399–406.PubMedGoogle Scholar
  27. 27.
    Knost JA, Sherwin SA, Abrams PG, Ochs JJ, Foon KA, Williams R, Tuttle R, Oldham RK. The treatment of cancer patients with human lymphoblastoid interferon. A comparison of two routes of administration. Cancer Immunol. 1983;15:144–8.Google Scholar
  28. 28.
    Quesada JR, Hawkins M, Horning S, Alexanian R, Borden E, Merigan T, Adams F, Gutterman JU. Collaborative phase I-II study of recombinant DNA-produced leukocyte interferon (clone A) in metastatic breast cancer, malignant lymphoma, and multiple myeloma. Am J Med. 1984;77:427–32.PubMedGoogle Scholar
  29. 29.
    Quesada JR, Reuben J, Manning JT, Hersh EM, Gutterman JU. Alpha interferon for induction of remission in hairy-cell leukemia. N Engl J Med. 1984;310:15–8.PubMedGoogle Scholar
  30. 30.
    Priestman TJ. Initial evaluation of human lymphoblastoid interferon in patients with advanced malignant disease. Lancet. 1980;2:113–8.PubMedGoogle Scholar
  31. 31.
    Retsas S, Priestman TJ, Newton KA, Westbury G. Evaluation of human lymphoblastoid interferon in advanced malignant melanoma. Cancer. 1983;51:273–6.PubMedGoogle Scholar
  32. 32.
    Paul WE. Interleukin 4/B cell stimulatory factor 1: one lymphokine, many functions. FASEB J. 1987;1:456–61.PubMedGoogle Scholar
  33. 33.
    Tepper RI, Pattengale PK, Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell. 1989;57:503–12.PubMedGoogle Scholar
  34. 34.
    Oi VT, Morrison SL, Herzenberg LA, Berg P. Immunoglobulin gene expression in transformed lymphoid cells. Proc Natl Acad Sci U S A. 1983;80:825–9.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Li WQ, Diamantstein T, Blankenstein T. Lack of tumorigenicity of interleukin 4 autocrine growing cells seems related to the anti-tumor function of interleukin 4. Mol Immunol. 1990;27:1331–7.PubMedGoogle Scholar
  36. 36.
    Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 1988;54:105–15.PubMedGoogle Scholar
  37. 37.
    Patek PQ, Collins JL, Cohn M. Transformed cell lines susceptible or resistant to in vivo surveillance against tumorigenesis. Nature. 1978;276:510–1.PubMedGoogle Scholar
  38. 38.
    Fidler IJ, Nicolson GL. Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst. 1976;57:1199–202.PubMedGoogle Scholar
  39. 39.
    Dunham LJ, Stewart HL. A survey of transplantable and transmissible animal tumors. J Natl Cancer Inst. 1953;13:1299–377.PubMedGoogle Scholar
  40. 40.
    Golumbek PT, Lazenby AJ, Levitsky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science. 1991;254:713–6.PubMedGoogle Scholar
  41. 41.
    Saito S, Bannerji R, Gansbacher B, Rosenthal FM, Romanenko P, Heston WD, Fair WR, Gilboa E. Immunotherapy of bladder cancer with cytokine gene-modified tumor vaccines. Cancer Res. 1994;54:3516–20.PubMedGoogle Scholar
  42. 42.
    Bannerji R, Arroyo CD, Cordon-Cardo C, Gilboa E. The role of IL-2 secreted from genetically modified tumor cells in the establishment of antitumor immunity. J Immunol. 1994;152:2324–32.PubMedGoogle Scholar
  43. 43.
    Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med. 1990;172:1217–24.PubMedGoogle Scholar
  44. 44.
    Rosenthal FM, Cronin K, Bannerji R, Golde DW, Gansbacher B. Augmentation of antitumor immunity by tumor cells transduced with a retroviral vector carrying the interleukin-2 and interferon-gamma cDNAs. Blood. 1994;83:1289–98.PubMedGoogle Scholar
  45. 45.
    Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993;90:3539–43.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990;60:397–403.PubMedGoogle Scholar
  47. 47.
    Zatloukal K, Schneeberger A, Berger M, Schmidt W, Koszik F, Kutil R, Cotten M, Wagner E, Buschle M, Maass G, et al. Elicitation of a systemic and protective anti-melanoma immune response by an IL-2-based vaccine. Assessment of critical cellular and molecular parameters. J Immunol. 1995;154:3406–19.PubMedGoogle Scholar
  48. 48.
    Maass G, Schweighoffer T, Berger M, Schmidt W, Herbst E, Zatloukal K, Buschle M, Birnstiel ML. Tumor vaccines: effects and fate of IL-2 transfected murine melanoma cells in vivo. Int J Immunopharmacol. 1995;17:65–73.PubMedGoogle Scholar
  49. 49.
    Bubenik J, Simova J, Jandlova T. Immunotherapy of cancer using local administration of lymphoid cells transformed by IL-2 cDNA and constitutively producing IL-2. Immunol Lett. 1990;23:287–92.PubMedGoogle Scholar
  50. 50.
    Tsai SC, Gansbacher B, Tait L, Miller FR, Heppner GH. Induction of antitumor immunity by interleukin-2 gene-transduced mouse mammary tumor cells versus transduced mammary stromal fibroblasts. J Natl Cancer Inst. 1993;85:546–53.PubMedGoogle Scholar
  51. 51.
    Cavallo F, Giovarelli M, Gulino A, Vacca A, Stoppacciaro A, Modesti A, Forni G. Role of neutrophils and CD4 + T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene. J Immunol. 1992;149:3627–35.PubMedGoogle Scholar
  52. 52.
    Porgador A, Gansbacher B, Bannerji R, Tzehoval E, Gilboa E, Feldman M, Eisenbach L. Anti-metastatic vaccination of tumor-bearing mice with IL-2-gene-inserted tumor cells. Int J Cancer. 1993;53:471–7.PubMedGoogle Scholar
  53. 53.
    Ohe Y, Podack ER, Olsen KJ, Miyahara Y, Ohira T, Miura K, Nishio K, Saijo N. Combination effect of vaccination with IL2 and IL4 cDNA transfected cells on the induction of a therapeutic immune response against Lewis lung carcinoma cells. Int J Cancer. 1993;53:432–7.PubMedGoogle Scholar
  54. 54.
    Connor J, Bannerji R, Saito S, Heston W, Fair W, Gilboa E. Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells. J Exp Med. 1993;177:1127–34.PubMedGoogle Scholar
  55. 55.
    Gastl G, Finstad CL, Guarini A, Bosl G, Gilboa E, Bander NH, Gansbacher B. Retroviral vector-mediated lymphokine gene transfer into human renal cancer cells. Cancer Res. 1992;52:6229–36.PubMedGoogle Scholar
  56. 56.
    Vieweg J, Rosenthal FM, Bannerji R, Heston WD, Fair WR, Gansbacher B, Gilboa E. Immunotherapy of prostate cancer in the Dunning rat model: use of cytokine gene modified tumor vaccines. Cancer Res. 1994;54:1760–5.PubMedGoogle Scholar
  57. 57.
    Porgador A, Tzehoval E, Katz A, Vadai E, Revel M, Feldman M, Eisenbach L. Interleukin 6 gene transfection into Lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res. 1992;52:3679–86.PubMedGoogle Scholar
  58. 58.
    Ohe Y, Podack ER, Olsen KJ, Miyahara Y, Miura K, Saito H, Koishihara Y, Ohsugi Y, Ohira T, Nishio K, et al. Interleukin-6 cDNA transfected Lewis lung carcinoma cells show unaltered net tumour growth rate but cause weight loss and shortened survival in syngeneic mice. Br J Cancer. 1993;67:939–44.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Aoki T, Tashiro K, Miyatake S, Kinashi T, Nakano T, Oda Y, Kikuchi H, Honjo T. Expression of murine interleukin 7 in a murine glioma cell line results in reduced tumorigenicity in vivo. Proc Natl Acad Sci U S A. 1992;89:3850–4.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Hock H, Dorsch M, Diamantstein T, Blankenstein T. Interleukin 7 induces CD4 + T cell-dependent tumor rejection. J Exp Med. 1991;174:1291–8.PubMedGoogle Scholar
  61. 61.
    de Vos S Kohn DB Cho SK McBride WH Said JW Koeffler HP. Immunotherapy against murine leukemia. Leukemia. 1998;12:401–5.PubMedGoogle Scholar
  62. 62.
    Tahara H, Zitvogel L, Storkus WJ, Zeh HJ 3rd, McKinney TG, Schreiber RD, Gubler U, Robbins PD, Lotze MT. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J Immunol. 1995;154:6466–74.PubMedGoogle Scholar
  63. 63.
    Lo CH, Lee SC, Wu PY, Pan WY, Su J, Cheng CW, Roffler SR, Chiang BL, Lee CN, Wu CW, Tao MH. Antitumor and antimetastatic activity of IL-23. J Immunol. 2003;171:600–7.PubMedGoogle Scholar
  64. 64.
    Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa E. Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res. 1990;50:7820–5.PubMedGoogle Scholar
  65. 65.
    Watanabe Y, Kuribayashi K, Miyatake S, Nishihara K, Nakayama E, Taniyama T, Sakata T. Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci U S A. 1989;86:9456–60.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Teng MN, Park BH, Koeppen HK, Tracey KJ, Fendly BM, Schreiber H. Long-term inhibition of tumor growth by tumor necrosis factor in the absence of cachexia or T-cell immunity. Proc Natl Acad Sci U S A. 1991;88:3535–9.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Asher AL, Mule JJ, Kasid A, Restifo NP, Salo JC, Reichert CM, Jaffe G, Fendly B, Kriegler M, Rosenberg SA. Murine tumor cells transduced with the gene for tumor necrosis factor-alpha. Evidence for paracrine immune effects of tumor necrosis factor against tumors. J Immunol. 1991;146:3227–34.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Blankenstein T, Qin ZH, Uberla K, Muller W, Rosen H, Volk HD, Diamantstein T. Tumor suppression after tumor cell-targeted tumor necrosis factor alpha gene transfer. J Exp Med. 1991;173:1047–52.PubMedGoogle Scholar
  69. 69.
    Karp SE, Hwu P, Farber A, Restifo NP, Kriegler M, Mule JJ, Rosenberg SA. In vivo activity of tumor necrosis factor (TNF) mutants. Secretory but not membrane-bound TNF mediates the regression of retrovirally transduced murine tumor. J Immunol. 1992;149:2076–81.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Colombo MP, Ferrari G, Stoppacciaro A, Parenza M, Rodolfo M, Mavilio F, Parmiani G. Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med. 1991;173:889–97.PubMedGoogle Scholar
  71. 71.
    Rollins BJ. JE/MCP-1: an early-response gene encodes a monocyte-specific cytokine. Cancer Cell. 1991;3:517–24.Google Scholar
  72. 72.
    Erard F, Corthesy P, Nabholz M, Lowenthal JW, Zaech P, Plaetinck G, MacDonald HR. Interleukin 2 is both necessary and sufficient for the growth and differentiation of lectin-stimulated cytolytic T lymphocyte precursors. J Immunol. 1985;134:1644–52.PubMedGoogle Scholar
  73. 73.
    Mosmann TR, Coffman RL. Two types of mouse helper T-cell clone Implications for immune regulation. Immunol Today. 1987;8:223–7.PubMedGoogle Scholar
  74. 74.
    Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376.PubMedGoogle Scholar
  75. 75.
    Smith KA. Interleukin-2: inception, impact, and implications. Science. 1988;240:1169–76.PubMedGoogle Scholar
  76. 76.
    Rosenberg SA, Lotze MT. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol. 1986;4:681–709.PubMedGoogle Scholar
  77. 77.
    Tirapu I, Huarte E, Guiducci C, Arina A, Zaratiegui M, Murillo O, Gonzalez A, Berasain C, Berraondo P, Fortes P, Prieto J, Colombo MP, Chen L, Melero I. Low surface expression of B7–1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res. 2006;66:2442–50.PubMedGoogle Scholar
  78. 78.
    Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121:1–14.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Restifo NP, Esquivel F, Kawakami Y, Yewdell JW, Mule JJ, Rosenberg SA, Bennink JR. Identification of human cancers deficient in antigen processing. J Exp Med. 1993;177:265–72.PubMedGoogle Scholar
  80. 80.
    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.PubMedGoogle Scholar
  81. 81.
    Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH, Dornan ES, Miners K, Nunes C, Man S. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology. 2010;407:137–42.PubMedGoogle Scholar
  82. 82.
    Marchetti B, Ashrafi GH, Dornan ES, Araibi EH, Ellis SA, Campo MS. The E5 protein of BPV-4 interacts with the heavy chain of MHC class I and irreversibly retains the MHC complex in the Golgi apparatus. Oncogene. 2006;25:2254–63.PubMedGoogle Scholar
  83. 83.
    Zhang B, Li P, Wang E, Brahmi Z, Dunn KW, Blum JS, Roman A. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-gamma. Virology. 2003;310:100–8.PubMedGoogle Scholar
  84. 84.
    Fruh K, Yang Y. Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol. 1999;11:76–81.PubMedGoogle Scholar
  85. 85.
    Restifo NP, Spiess PJ, Karp SE, Mule JJ, Rosenberg SA. A nonimmunogenic sarcoma transduced with the cDNA for interferon gamma elicits CD8 + T cells against the wild-type tumor: correlation with antigen presentation capability. J Exp Med. 1992;175:1423–31.PubMedGoogle Scholar
  86. 86.
    Zhu W, Qin W, Sauter ER. Large-scale mitochondrial DNA deletion mutations and nuclear genome instability in human breast cancer. Cancer Detect Prev. 2004;28:119–26.PubMedGoogle Scholar
  87. 87.
    Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 2001;61:842–7.PubMedGoogle Scholar
  88. 88.
    Kass R, Agha J, Bellone S, Palmieri M, Cane S, Bignotti E, Henry-Tillman R, Hutchins L, Cannon MJ, Klimberg S, Santin AD. In vitro induction of tumor-specific HLA class I-restricted CD8 + cytotoxic T lymphocytes from patients with locally advanced breast cancer by tumor antigen-pulsed autologous dendritic cells. J Surg Res. 2003;112:189–97.PubMedGoogle Scholar
  89. 89.
    Labarriere N, Bretaudeau L, Gervois N, Bodinier M, Bougras G, Diez E, Lang F, Gregoire M, Jotereau F. Apoptotic body-loaded dendritic cells efficiently cross-prime cytotoxic T lymphocytes specific for NA17-A antigen but not for Melan-A/MART-1 antigen. Int J Cancer. 2002;101:280–6.PubMedGoogle Scholar
  90. 90.
    Goldszmid RS, Idoyaga J, Bravo AI, Steinman R, Mordoh J, Wainstok R. Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4 + and CD8 + T cell immunity against B16 melanoma. J Immunol. 2003;171:5940–7.PubMedGoogle Scholar
  91. 91.
    Muller MR, Grunebach F, Nencioni A, Brossart P. Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol. 2003;170:5892–6.PubMedGoogle Scholar
  92. 92.
    Muller MR, Tsakou G, Grunebach F, Schmidt SM, Brossart P. Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood. 2004;103:1763–9.PubMedGoogle Scholar
  93. 93.
    de Zoeten E Carr-Brendel V Markovic D Taylor-Papadimitriou J Cohen EP. Treatment of breast cancer with fibroblasts transfected with DNA from breast cancer cells. J Immunol. 1999;162:6934–41.PubMedGoogle Scholar
  94. 94.
    Sung Kim T Cohen EP. Immunity to breast cancer in mice immunized with fibroblasts transfected with a cDNA expression library derived from small numbers of breast cancer cells. Cancer Gene Ther. 2005;12:890–9.PubMedGoogle Scholar
  95. 95.
    Kim TS, Jung MY, Cho D, Cohen EP. Prolongation of the survival of breast cancer-bearing mice immunized with GM-CSF-secreting syngeneic/allogeneic fibroblasts transfected with a cDNA expression library from breast cancer cells. Vaccine. 2006;24:6564–73.PubMedGoogle Scholar
  96. 96.
    Peron JM, Bureau C, Gourdy P, Lulka H, Souque A, Calippe B, Selves J, Al Saati T, Bernad J, Cordelier P, Couderc B, Pradayrol L, Pipy B, Buscail L, Vinel JP. Treatment of experimental murine pancreatic peritoneal carcinomatosis with fibroblasts genetically modified to express IL12: a role for peritoneal innate immunity. Gut. 2007;56:107–14.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Tahara H, Zeh HJ 3rd, Storkus WJ, Pappo I, Watkins SC, Gubler U, Wolf SF, Robbins PD, Lotze MT. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res. 1994;54:182–9.PubMedGoogle Scholar
  98. 98.
    Kim TS, Chopra A, IS OS, Cohen EP. Enhanced immunity to breast cancer in mice immunized with fibroblasts transfected with a complementary DNA expression library from breast cancer cells: enrichment of the vaccine for immunotherapeutic cells. J Immunother. 2006;29:261–73.PubMedGoogle Scholar
  99. 99.
    Lichtor T, Glick RP, Lin H, I OS, Cohen EP. Intratumoral injection of IL-secreting syngeneic/allogeneic fibroblasts transfected with DNA from breast cancer cells prolongs the survival of mice with intracerebral breast cancer. Cancer Gene Ther. 2005;12:708–14.PubMedGoogle Scholar
  100. 100.
    Golumbek PT, Azhari R, Jaffee EM, Levitsky HI, Lazenby A, Leong K, Pardoll DM. Controlled release, biodegradable cytokine depots: a new approach in cancer vaccine design. Cancer Res. 1993;53:5841–4.PubMedGoogle Scholar
  101. 101.
    Dunn GP, Dunn IF, Curry WT. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun. 2007;7:12.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Oble DA, Loewe R, Yu P, Mihm MC, Jr. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun. 2009;9:3.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Ohtani H. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun. 2007;7:4.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, Brock J, Criscitiello C, Bailey H, Ignatiadis M, Floris G, Sparano J, Kos Z, Nielsen T, Rimm DL, Allison KH, Reis-Filho JS, Loibl S, Sotiriou C, Viale G, Badve S, Adams S, Willard-Gallo K, Loi S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2014.Google Scholar
  105. 105.
    Schatton T, Scolyer RA, Thompson JF, Mihm MC Jr. Tumor-infiltrating lymphocytes and their significance in melanoma prognosis. Methods Mol Biol. 2014;1102:287–324.PubMedGoogle Scholar
  106. 106.
    Shirabe K, Motomura T, Muto J, Toshima T, Matono R, Mano Y, Takeishi K, Ijichi H, Harada N, Uchiyama H, Yoshizumi T, Taketomi A, Maehara Y. Tumor-infiltrating lymphocytes and hepatocellular carcinoma: pathology and clinical management. Int J Clin Oncol. 2010;15:552–8.PubMedGoogle Scholar
  107. 107.
    Uppaluri R, Dunn GP, Lewis JS Jr. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in head and neck cancers. Cancer Immun. 2008;8:16.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917–24.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Chinnasamy N, Wargo JA, Yu Z, Rao M, Frankel TL, Riley JP, Hong JJ, Parkhurst MR, Feldman SA, Schrump DS, Restifo NP, Robbins PF, Rosenberg SA, Morgan RA. A TCR targeting the HLA-A*0201-restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer. J Immunol. 2011;186:685–96.PubMedGoogle Scholar
  111. 111.
    Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19:620–6.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, Rossig C, Russell HV, Diouf O, Liu E, Liu H, Wu MF, Gee AP, Mei Z, Rooney CM, Heslop HE, Brenner MK. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118:6050–6.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood. 2010;116:3875–86.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12:269–81.PubMedGoogle Scholar
  115. 115.
    Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8 + T cells. J Exp Med. 2003;198:569–80.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Watt B, van Niel G, Raposo G, Marks MS. PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res. 2013;26:300–15.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Klebanoff CA, Gattinoni L, Palmer DC, Muranski P, Ji Y, Hinrichs CS, Borman ZA, Kerkar SP, Scott CD, Finkelstein SE, Rosenberg SA, Restifo NP. Determinants of successful CD8 + T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res. 2011;17:5343–52.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, Paulos CM, Muranski P, Restifo NP. Wnt signaling arrests effector T cell differentiation and generates CD8 + memory stem cells. Nat Med. 2009;15:808–13.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Gattinoni L, Powell DJ Jr., Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol. 2006;6:383–93.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, Morton KE, Laurencot CM, Steinberg SM, White DE, Dudley ME. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550–7.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8 + T cells. J Clin Invest. 2005;115:1616–26.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Molecular Neuroscience, Institute of Anatomy and Cell BiologyPhilipps UniversityMarburgGermany

Personalised recommendations