Skip to main content

Engineered Versions of Granzyme B and Angiogenin Overcome Intrinsic Resistance to Apoptosis Mediated by Human Cytolytic Fusion Proteins

  • Chapter
  • First Online:
Resistance to Immunotoxins in Cancer Therapy

Abstract

The use of therapies based on antibody fusion proteins for the selective elimination of tumor cells has increased markedly over the last two decades because the severe side effects associated with conventional chemotherapy and radiotherapy are reduced or even eliminated. However, the initial development of immunotoxins suffered from a number of drawbacks such as nonspecific cytotoxicity and the induction of immune responses because the components were non-human in origin. The most recent iteration of this approach is a new class of targeted human cytolytic fusion proteins (hCFPs) comprising a tumor-specific targeting component such as a human antibody fragment fused to a human effector domain with pro-apoptotic activity. Certain tumors resist the activity of hCFPs by upregulating the intracellular expression of native inhibitors, which rapidly bind and inactivate the human effector domains. Higher doses of the hCFPs are, therefore, required to improve therapeutic efficacy. To circumvent these inhibitory processes, novel isoforms of the enzymes granzyme B and angiogenin have been designed to increase their intrinsic activity and reduce their interactions with native inhibitors resulting in more potent hCFPs that can be applied at lower doses. This chapter summarizes the basic scientific knowledge that can facilitate the rational development of human enzymes with novel and beneficial characteristics, including the ability to avoid neutralization by native inhibitors.

These authors contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Å:

Angström

ADC:

Antibody drug conjugate

ALS:

Amyotrophic lateral sclerosis

AML:

Acute myeloid leukemia

AMML:

Acute myelomonocytic leukemia

APAF 1:

Apoptoticproteaseactivatingfactor 1

AV:

Annexin V

BID:

BH3 interacting domain death agonist

CASM:

Computer-aided simulation modeling

CMML:

Chronic myelomonocytic leukemia

CNS:

Central nervous system

CTL:

Cytotoxic T lymphocyte

Cyt c:

Cytochrome C

DAPK2:

Death-associated proteinkinase 2

dATP:

Deoxyadenosine triphosphat

DC:

Dendritic cell

DFF45:

DNA fragmentation factor-45

DFG:

Deutsche Forschungsgemeinschaft

DNA:

Deoxyribonucleicacid

DNA PK:

DNA-dependentproteinkinase

DNMT2:

DNA methyltransferase 2

DPPI:

Dipeptidyl peptidase 1

EBV:

Epstein-Barr virus

EC50:

Half maximal effective concentration

EFRE:

European Fund for Regional Development

ER:

Endoplasmicreticulum

ETA:

Pseudomonas aeruginosaexotoxin A

ETA’:

Truncated version of the Pseudomonas aeruginosa exotoxin A

FDA:

Food and Drug Administration

GrB:

Granzyme B

HAMA:

Human anti-mouse antibody

hCFP:

Human cytolytic fusion protein

HEK:

Human embryonic kidney

hLHR:

Human luteinizing hormone receptor

ICAD:

Inhibitor of caspase-activated DNase

IFN:

Interferon

IL:

Interleukin

IRES:

Internal ribosome entrysite

LeY:

Lewis Y antigen

LPS:

Lipopolysaccharide

MOMP:

Mitochondrial outer membrane permeabilization

mRNA:

Messenger RNA

mRNP:

mRNA-based ribonucleoproteins

NKcells:

Natural killer cells

NLS:

Nuclear localization signal

NRW:

North-Rhine Westphalia

NuMA:

Nuclear mitotic apparatus protein

PARP:

Poly (ADP-ribose) polymerase

PEG:

Polyethylene glycol

PI:

Propidium iodide

PI 9:

Proteinase inhibitor-9

raPIT5a:

Rat pituitary gland

RCL:

Reactive center loop

RISC:

RNA-induced silencing complex

RNA:

Ribonucleic acid

RNAi:

RNA interference

RNH1:

Ribonuclease/angiogen ininhibitor 1

RPMI:

Roswell Park Memorial Instiute

rRNA:

Ribosomal RNA

scFv:

Single chain fragment variable

SDS:

Sodium dodecyl sulfate

tiRNA:

tRNA-derived stress-induced RNA

TNF:

Tumor necrosis factor

tRNA:

Transfer RNA

XIAP:

X-linked inhibitor of apoptosis protein

XTT:

2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide

References

  1. Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14.

    PubMed Central  PubMed  Google Scholar 

  2. Reichert JM. Antibody-based therapeutics to watch in 2011. MAbs. 2011;3(1):76–99.

    PubMed Central  PubMed  Google Scholar 

  3. Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 2006;5(2):147–59.

    CAS  PubMed  Google Scholar 

  4. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 2001;1(2):118–29.

    CAS  PubMed  Google Scholar 

  5. Dosio F, Brusa P, Cattel L. Immunotoxins and anticancer drug conjugate assemblies: the role of the linkage between components. Toxins (Basel). 2011;3(7):848–83.

    CAS  Google Scholar 

  6. Weldon JE, Pastan I. A guide to taming a toxin-recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J. 2011;278(23):4683–700.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Schnell R, Borchmann P, Staak JO, Schindler J, Ghetie V, Vitetta ES, Engert A. Clinical evaluation of ricin A-chain immunotoxins in patients with Hodgkin’s lymphoma. Ann Oncol. 2003;14(5):729–36.

    CAS  PubMed  Google Scholar 

  8. Lambert JM. Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol. 2005;5(5):543–9.

    CAS  PubMed  Google Scholar 

  9. Becker NB I. Antibody-based immunotoxins for the treatment of cancer. Antibodies. 2012;1:39–69.

    Google Scholar 

  10. Younes A, Yasothan U, Kirkpatrick P. Brentuximab vedotin. Nat Rev Drug Discov. 2012;11(1):19–20.

    CAS  PubMed  Google Scholar 

  11. Sawaki M. Trastuzumab emtansine in the treatment of HER2-positive metastatic breast cancer in Japanese patients. Breast Cancer (Dove Med Press). 2014;6:37–41.

    Google Scholar 

  12. Dang NH, Pro B, Hagemeister FB, Samaniego F, Jones D, Samuels BI, Rodriguez MA, Goy A, Romaguera JE, McLaughlin P, Tong AT, Turturro F, Walker PL, Fayad L. Phase II trial of denileukin diftitox for relapsed/refractory T-cell non-Hodgkin lymphoma. Br J Haematol. 2007;136(3):439–47.

    CAS  PubMed  Google Scholar 

  13. Mischak RP, Foxall C, Rosendorf LL, Knebel K, Scannon PJ, Spitler LE. Human antibody responses to components of the monoclonal antimelanoma antibody ricin A chain immunotoxin XomaZyme-MEL. Mol Biother. 1990;2(2):104–9.

    CAS  PubMed  Google Scholar 

  14. Scadden DT, Schenkein DP, Bernstein Z, Luskey B, Doweiko J, Tulpule A, Levine AM. Immunotoxin combined with chemotherapy for patients with AIDS-related non-Hodgkin’s lymphoma. Cancer. 1998;83(12):2580–7.

    CAS  PubMed  Google Scholar 

  15. Madhumathi J, Verma RS. Therapeutic targets and recent advances in protein immunotoxins. Curr Opin Microbiol. 2012;15(3):300–9.

    CAS  PubMed  Google Scholar 

  16. Mathew M, Verma RS. Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci. 2009;100(8):1359–65.

    CAS  PubMed  Google Scholar 

  17. Oratz R, Speyer JL, Wernz JC, Hochster H, Meyers M, Mischak R, Spitler LE. Antimelanoma monoclonal antibody-ricin A chain immunoconjugate (XMMME-001-RTA) plus cyclophosphamide in the treatment of metastatic malignant melanoma: results of a phase II trial. J Biol Response Mod. 1990;9(4):345–54.

    CAS  PubMed  Google Scholar 

  18. Siegall CB, Haggerty HG, Warner GL, Chace D, Mixan B, Linsley PS, Davidson T. Prevention of immunotoxin-induced immunogenicity by coadministration with CTLA4Ig enhances antitumor efficacy. J Immunol. 1997;159(10):5168–73.

    CAS  PubMed  Google Scholar 

  19. Tsutsumi Y, Onda M, Nagata S, Lee B, Kreitman RJ, Pastan I. Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc Natl Acad Sci U S A. 2000;97(15):8548–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Hansen JK, Weldon JE, Xiang L, Beers R, Onda M, Pastan I. A recombinant immunotoxin targeting CD22 with low immunogenicity, low nonspecific toxicity, and high antitumor activity in mice. J Immunother. 2010;33(3):297–304.

    CAS  PubMed  Google Scholar 

  21. Liu W, Onda M, Lee B, Kreitman RJ, Hassan R, Xiang L, Pastan I. Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B-cell epitopes. Proc Natl Acad Sci U S A. 2012;109(29):11782–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature. 1986;321(6069):522–5.

    CAS  PubMed  Google Scholar 

  23. Lonberg N. Fully human antibodies from transgenic mouse and phage display platforms. Curr Opin Immunol. 2008;20(4):450–9.

    CAS  PubMed  Google Scholar 

  24. Stahnke B, Thepen T, Stocker M, Rosinke R, Jost E, Fischer R, Tur MK, Barth S. Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther. 2008;7(9):2924–32.

    CAS  PubMed  Google Scholar 

  25. Huhn M, Sasse S, Tur MK, Matthey B, Schinkothe T, Rybak SM, Barth S, Engert A. Human angiogenin fused to human CD30 ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res. 2001;61(24):8737–42.

    CAS  PubMed  Google Scholar 

  26. Tur MK, Neef I, Jager G, Teubner A, Stocker M, Melmer G, Barth S. Immunokinases, a novel class of immunotherapeutics for targeted cancer therapy. Curr Pharm Des. 2009;15(23):2693–9.

    CAS  PubMed  Google Scholar 

  27. Hristodorov D, Mladenov R, Pardo A, Pham AT, Huhn M, Fischer R, Thepen T, Barth S. Microtubule-associated protein tau facilitates the targeted killing of proliferating cancer cells in vitro and in a xenograft mouse tumour model in vivo. Br J Cancer. 2013;109(6):1570–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Rosenblum MG, Barth S. Development of novel, highly cytotoxic fusion constructs containing granzyme B: unique mechanisms and functions. Curr Pharm Des. 2009;15(23):2676–92.

    CAS  PubMed  Google Scholar 

  29. Lorberboum-Galski H. Human toxin-based recombinant immunotoxins/chimeric proteins as a drug delivery system for targeted treatment of human diseases. Expert Opin Drug Deliv. 2011;8(5):605–21.

    CAS  PubMed  Google Scholar 

  30. Kagi D, Ledermann B, Burki K, Zinkernagel RM, Hengartner H. Lymphocyte-mediated cytotoxicity in vitro and in vivo: mechanisms and significance. Immunol Rev. 1995;146:95–115.

    CAS  PubMed  Google Scholar 

  31. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 2003;10(1):26–35.

    CAS  PubMed  Google Scholar 

  32. Falschlehner C, Emmerich CH, Gerlach B, Walczak H. TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol. 2007;39(7–8):1462–75.

    CAS  PubMed  Google Scholar 

  33. Trapani JA. Granzymes: a family of lymphocyte granule serine proteases. Genome Biol. 2001;2(12):reviews3014.1–3014.7

    Google Scholar 

  34. Hudig D, Gregg NJ, Kam CM, Powers JC. Lymphocyte granule-mediated cytolysis requires serine protease activity. Biochem Biophys Res Commun. 1987;149(3):882–8.

    CAS  PubMed  Google Scholar 

  35. Edwards KM, Kam CM, Powers JC, Trapani JA. The human cytotoxic T cell granule serine protease granzyme H has chymotrypsin-like (chymase) activity and is taken up into cytoplasmic vesicles reminiscent of granzyme B-containing endosomes. J Biol Chem. 1999;274(43):30468–73.

    CAS  PubMed  Google Scholar 

  36. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997;272(29):17907–11.

    CAS  PubMed  Google Scholar 

  37. Kam CM, Hudig D, Powers JC. Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochim Biophys Acta. 2000;1477(1–2):307–23.

    CAS  PubMed  Google Scholar 

  38. Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 2002;20:323–70.

    CAS  PubMed  Google Scholar 

  39. Boivin WA, Cooper DM, Hiebert PR, Granville DJ. Intracellular versus extracellular granzyme B in immunity and disease: challenging the dogma. Lab Invest. 2009;89(11):1195–220.

    CAS  PubMed  Google Scholar 

  40. Bots M, Medema JP. Granzymes at a glance. J Cell Sci. 2006;119(Pt 24):5011–4.

    CAS  PubMed  Google Scholar 

  41. Pham CT, Ley TJ. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci U S A. 1999;96(15):8627–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Raja SM, Wang B, Dantuluri M, Desai UR, Demeler B, Spiegel K, Metkar SS, Froelich CJ. Cytotoxic cell granule-mediated apoptosis. Characterization of the macromolecular complex of granzyme B with serglycin. J Biol Chem. 2002;277(51):49523–30.

    CAS  PubMed  Google Scholar 

  43. Jenkins MR, Griffiths GM. The synapse and cytolytic machinery of cytotoxic T cells. Curr Opin Immunol. 2010;22(3):308–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.

    CAS  PubMed  Google Scholar 

  45. Pinkoski MJ, Winkler U, Hudig D, Bleackley RC. Binding of granzyme B in the nucleus of target cells. Recognition of an 80-kilodalton protein. J Biol Chem. 1996;271(17):10225–9.

    CAS  PubMed  Google Scholar 

  46. Kurschus FC, Jenne DE. Delivery and therapeutic potential of human granzyme B. Immunol Rev. 2010;235(1):159–71.

    CAS  PubMed  Google Scholar 

  47. Rousalova I, Krepela E. Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol. 2010;37(6):1361–78.

    CAS  PubMed  Google Scholar 

  48. Chowdhury D, Lieberman J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol. 2008;26:389–420.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163.

    CAS  PubMed  Google Scholar 

  50. Kim HE, Du F, Fang M, Wang X. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci U S A. 2005;102(49):17545–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Guerrero AD, Chen M, Wang J. Delineation of the caspase-9 signaling cascade. Apoptosis. 2008;13(1):177–86.

    CAS  PubMed  Google Scholar 

  52. Andrade F, Roy S, Nicholson D, Thornberry N, Rosen A, Casciola-Rosen L. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity. 1998;8(4):451–60.

    CAS  PubMed  Google Scholar 

  53. Goping IS, Sawchuk T, Underhill DA, Bleackley RC. Identification of {alpha}-tubulin as a granzyme B substrate during CTL-mediated apoptosis. J Cell Sci. 2006;119(Pt 5):858–65.

    CAS  PubMed  Google Scholar 

  54. Sebbagh M, Hamelin J, Bertoglio J, Solary E, Breard J. Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med. 2005;201(3):465–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Sharif-Askari E, Alam A, Rheaume E, Beresford PJ, Scotto C, Sharma K, Lee D, De Wolf WE, Nuttall ME, Lieberman J, Sekaly RP. Direct cleavage of the human DNA fragmentation factor-45 by granzyme B induces caspase-activated DNase release and DNA fragmentation. EMBO J. 2001;20(12):3101–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Zhang D, Beresford PJ, Greenberg AH, Lieberman J. Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis. Proc Natl Acad Sci U S A. 2001;98(10):5746–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Afonina IS, Cullen SP, Martin SJ. Cytotoxic and non-cytotoxic roles of the CTL/NK protease granzyme B. Immunol Rev. 2010;235(1):105–16.

    CAS  PubMed  Google Scholar 

  58. Dalken B, Giesubel U, Knauer SK, Wels WS. Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition. Cell Death Differ. 2006;13(4):576–85.

    CAS  PubMed  Google Scholar 

  59. Kurschus FC, Kleinschmidt M, Fellows E, Dornmair K, Rudolph R, Lilie H, Jenne DE. Killing of target cells by redirected granzyme B in the absence of perforin. FEBS Lett. 2004;562(1–3):87–92.

    CAS  PubMed  Google Scholar 

  60. Wang T, Zhao J, Ren JL, Zhang L, Wen WH, Zhang R, Qin WW, Jia LT, Yao LB, Zhang YQ, Chen SY, Yang AG. Recombinant immunoproapoptotic proteins with furin site can translocate and kill HER2-positive cancer cells. Cancer Res. 2007;67(24):11830–9.

    CAS  PubMed  Google Scholar 

  61. Kanatani I, Lin X, Yuan X, Manorek G, Shang X, Cheung LH, Rosenblum MG, Howell SB. Targeting granzyme B to tumor cells using a yoked human chorionic gonadotropin. Cancer Chemother Pharmacol. 2011;68(4):979–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Zhao J, Zhang LH, Jia LT, Zhang L, Xu YM, Wang Z, Yu CJ, Peng WD, Wen WH, Wang CJ, Chen SY, Yang AG. Secreted antibody/granzyme B fusion protein stimulates selective killing of HER2-overexpressing tumor cells. J Biol Chem. 2004;279(20):21343–8.

    CAS  PubMed  Google Scholar 

  63. Dalken B, Jabulowsky RA, Oberoi P, Benhar I, Wels WS. Maltose-binding protein enhances secretion of recombinant human granzyme B accompanied by in vivo processing of a precursor MBP fusion protein. PLoS One. 5(12):e14404.

    Google Scholar 

  64. Caputo A, Garner RS, Winkler U, Hudig D, Bleackley RC. Activation of recombinant murine cytotoxic cell proteinase-1 requires deletion of an amino-terminal dipeptide. J Biol Chem. 1993;268(24):17672–5.

    CAS  PubMed  Google Scholar 

  65. Liu Y, Zhang W, Niu T, Cheung LH, Munshi A, Meyn RE Jr, Rosenblum MG. Targeted apoptosis activation with GrB/scFvMEL modulates melanoma growth, metastatic spread, chemosensitivity, and radiosensitivity. Neoplasia. 2006;8(2):125–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Liu Y, Cheung LH, Thorpe P, Rosenblum MG. Mechanistic studies of a novel human fusion toxin composed of vascular endothelial growth factor (VEGF)121 and the serine protease granzyme B: directed apoptotic events in vascular endothelial cells. Mol Cancer Ther. 2003;2(10):949–59.

    CAS  PubMed  Google Scholar 

  67. Giesubel U, Dalken B, Mahmud H, Wels WS. Cell binding, internalization and cytotoxic activity of human granzyme B expressed in the yeast Pichia pastoris. Biochem J. 2006;394(Pt 3):563–73.

    PubMed Central  PubMed  Google Scholar 

  68. Smyth MJ, McGuire MJ, Thia KY. Expression of recombinant human granzyme B. A processing and activation role for dipeptidyl peptidase I. J Immunol. 1995;154(12):6299–305.

    CAS  PubMed  Google Scholar 

  69. Liu Y, Cheung LH, Hittelman WN, Rosenblum MG. Targeted delivery of human pro-apoptotic enzymes to tumor cells: in vitro studies describing a novel class of recombinant highly cytotoxic agents. Mol Cancer Ther. 2003;2(12):1341–50.

    CAS  PubMed  Google Scholar 

  70. Zhang L, Zhao J, Wang T, Yu CJ, Jia LT, Duan YY, Yao LB, Chen SY, Yang AG. HER2-targeting recombinant protein with truncated pseudomonas exotoxin A translocation domain efficiently kills breast cancer cells. Cancer Biol Ther. 2008;7(8):1226–31.

    CAS  PubMed  Google Scholar 

  71. Cao Y, Marks JW, Liu Z, Cheung LH, Hittelman WN, Rosenblum MG. Design optimization and characterization of Her2/neu-targeted immunotoxins: comparative in vitro and in vivo efficacy studies. Oncogene. 2014;33(4):429–39.

    CAS  PubMed  Google Scholar 

  72. Schiffer S, Hansen HP, Hehmann-Titt G, Huhn M, Fischer R, Barth S, Thepen T. Efficacy of an adapted granzyme B-based anti-CD30 cytolytic fusion protein against PI-9-positive classical Hodgkin lymphoma cells in a murine model. Blood Cancer J. 2013;3:e106.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Hehmann-Titt G, Schiffer S, Berges N, Melmer G, Barth S. Improving the therapeutic potential of human Granzyme B for targeted cancer therapy. Antibodies. 2013;2:19–49.

    CAS  Google Scholar 

  74. Ray M, Hostetter DR, Loeb CR, Simko J, Craik CS. Inhibition of Granzyme B by PI-9 protects prostate cancer cells from apoptosis. Prostate. 2012;72(8):846–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Jiang X, Ellison SJ, Alarid ET, Shapiro DJ. Interplay between the levels of estrogen and estrogen receptor controls the level of the granzyme inhibitor, proteinase inhibitor 9 and susceptibility to immune surveillance by natural killer cells. Oncogene. 2007;26(28):4106–14.

    CAS  PubMed  Google Scholar 

  76. Bird CH, Sutton VR, Sun J, Hirst CE, Novak A, Kumar S, Trapani JA, Bird PI. Selective regulation of apoptosis: the cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas cell death pathway. Mol Cell Biol. 1998;18(11):6387–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Jiang X, Orr BA, Kranz DM, Shapiro DJ. Estrogen induction of the granzyme B inhibitor, proteinase inhibitor 9, protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells. Endocrinology. 2006;147(3):1419–26.

    CAS  PubMed  Google Scholar 

  78. Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, Offringa R. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A. 2001;98(20):11515–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Fritsch K, Finke J, Grullich C. Suppression of granzyme B activity and caspase-3 activation in leukaemia cells constitutively expressing the protease inhibitor 9. Ann Hematol. 2013;92(12):1603–9.

    CAS  PubMed  Google Scholar 

  80. Godal R, Keilholz U, Uharek L, Letsch A, Asemissen AM, Busse A, Na IK, Thiel E, Scheibenbogen C. Lymphomas are sensitive to perforin-dependent cytotoxic pathways despite expression of PI-9 and overexpression of bcl-2. Blood. 2006;107(8):3205–11.

    CAS  PubMed  Google Scholar 

  81. Sun J, Bird CH, Sutton V, McDonald L, Coughlin PB, De Jong TA, Trapani JA, Bird PI. A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes. J Biol Chem. 1996;271(44):27802–9.

    CAS  PubMed  Google Scholar 

  82. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC. An overview of the serpin superfamily. Genome Biol. 2006;7(5):216.

    PubMed Central  PubMed  Google Scholar 

  83. Bots M, Medema JP. Serpins in T cell immunity. J Leukoc Biol. 2008;84(5):1238–47.

    CAS  PubMed  Google Scholar 

  84. Bots M, Van Bostelen L, Rademaker MT, Offringa R, Medema JP. Serpins prevent granzyme-induced death in a species-specific manner. Immunol Cell Biol. 2006;84(1):79–86.

    CAS  PubMed  Google Scholar 

  85. Buzza MS, Hirst CE, Bird CH, Hosking P, McKendrick J, Bird PI. The granzyme B inhibitor, PI-9, is present in endothelial and mesothelial cells, suggesting that it protects bystander cells during immune responses. Cell Immunol. 2001;210(1):21–9.

    CAS  PubMed  Google Scholar 

  86. Bladergroen BA, Strik MC, Wolbink AM, Wouters D, Broekhuizen R, Kummer JA, Hack CE. The granzyme B inhibitor proteinase inhibitor 9 (PI9) is expressed by human mast cells. Eur J Immunol. 2005;35(4):1175–83.

    CAS  PubMed  Google Scholar 

  87. Classen CF, Bird PI, Debatin KM. Modulation of the granzyme B inhibitor proteinase inhibitor 9 (PI-9) by activation of lymphocytes and monocytes in vitro and by Epstein-Barr virus and bacterial infection. Clin Exp Immunol. 2006;143(3):534–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Bladergroen BA, Strik MC, Bovenschen N, van Berkum O, Scheffer GL, Meijer CJ, Hack CE, Kummer JA. The granzyme B inhibitor, protease inhibitor 9, is mainly expressed by dendritic cells and at immune-privileged sites. J Immunol. 2001;166(5):3218–25.

    CAS  PubMed  Google Scholar 

  89. Buzza MS, Hosking P, Bird PI. The granzyme B inhibitor, PI-9, is differentially expressed during placental development and up-regulated in hydatidiform moles. Placenta. 2006;27(1):62–9.

    CAS  PubMed  Google Scholar 

  90. Kannan-Thulasiraman P, Shapiro DJ. Modulators of inflammation use nuclear factor-kappa B and activator protein-1 sites to induce the caspase-1 and granzyme B inhibitor, proteinase inhibitor 9. J Biol Chem. 2002;277(43):41230–9.

    CAS  PubMed  Google Scholar 

  91. Rowshani AT, Strik MC, Molenaar R, Yong SL, Wolbink AM, Bemelman FJ, Hack CE, Ten Berge IJ. The granzyme B inhibitor SERPINB9 (protease inhibitor 9) circulates in blood and increases on primary cytomegalovirus infection after renal transplantation. J Infect Dis. 2005;192(11):1908–11.

    CAS  PubMed  Google Scholar 

  92. Horie O, Saigo K, Murayama T, Ryo R. Differential expression of proteinase inhibitor-9 and granzyme B mRNAs in activated immunocompetent cells. Tohoku J Exp Med.2005;205(2):103–13.

    CAS  PubMed  Google Scholar 

  93. Barrie MB, Stout HW, Abougergi MS, Miller BC, Thiele DL. Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitor 6. J Immunol. 2004;172(10):6453–9.

    CAS  PubMed  Google Scholar 

  94. Hirst CE, Buzza MS, Bird CH, Warren HS, Cameron PU, Zhang M, Ashton-Rickardt PG, Bird PI. The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency. J Immunol. 2003;170(2):805–15.

    CAS  PubMed  Google Scholar 

  95. Majima T, Ichikura T, Chochi K, Kawabata T, Tsujimoto H, Sugasawa H, Kuranaga N, Takayama E, Kinoshita M, Hiraide H, Seki S, Mochizuki H. Exploitation of interleukin-18 by gastric cancers for their growth and evasion of host immunity. Int J Cancer. 2006;118(2):388–95.

    CAS  PubMed  Google Scholar 

  96. Jiang X, Orr BA, Kranz DM, Shapiro DJ. Estrogen induction of the granzyme B inhibitor, proteinase inhibitor 9, protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells. Endocrinology. 2006;147(3):1419–26.

    CAS  PubMed  Google Scholar 

  97. Jiang X, Patterson NM, Ling Y, Xie J, Helferich WG, Shapiro DJ. Low concentrations of the soy phytoestrogen genistein induce proteinase inhibitor 9 and block killing of breast cancer cells by immune cells. Endocrinology. 2008;149(11):5366–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Kanamori H, Krieg S, Mao C, Di Pippo VA, Wang S, Zajchowski DA, Shapiro DJ. Proteinase inhibitor 9, an inhibitor of granzyme B-mediated apoptosis, is a primary estrogen-inducible gene in human liver cells. J Biol Chem. 2000;275(8):5867–73.

    CAS  PubMed  Google Scholar 

  99. Rowshani AT, Florquin S, Bemelman F, Kummer JA, Hack CE, Ten Berge IJ. Hyperexpression of the granzyme B inhibitor PI-9 in human renal allografts: a potential mechanism for stable renal function in patients with subclinical rejection. Kidney Int. 2004;66(4):1417–22.

    CAS  PubMed  Google Scholar 

  100. Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol. 2014;10(1):41–62.

    CAS  PubMed  Google Scholar 

  101. Indran IR, Tufo G, Pervaiz S, Brenner C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta. 2011;1807(6):735–45.

    CAS  PubMed  Google Scholar 

  102. Bladergroen BA, Meijer CJ, ten Berge RL, Hack CE, Muris JJ, Dukers DF, Chott A, Kazama Y, Oudejans JJ, van Berkum O, Kummer JA. Expression of the granzyme B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: a novel protective mechanism for tumor cells to circumvent the immune system? Blood. 2002;99(1):232–7.

    CAS  PubMed  Google Scholar 

  103. Soriano C, Mukaro V, Hodge G, Ahern J, Holmes M, Jersmann H, Moffat D, Meredith D, Jurisevic C, Reynolds PN, Hodge S. Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: mechanism for immune evasion? Lung Cancer. 2012;77(1):38–45.

    PubMed  Google Scholar 

  104. Rousalova I, Krepela E, Prochazka J, Cermak J, Benkova K. Expression of proteinase inhibitor-9/serpinB9 in non-small cell lung carcinoma cells and tissues. Int J Oncol. 2010;36(1):275–83.

    CAS  PubMed  Google Scholar 

  105. Oudejans JJ, Harijadi H, Kummer JA, Tan IB, Bloemena E, Middeldorp JM, Bladergroen B, Dukers DF, Vos W, Meijer CJ. High numbers of granzyme B/CD8-positive tumour-infiltrating lymphocytes in nasopharyngeal carcinoma biopsies predict rapid fatal outcome in patients treated with curative intent. J Pathol. 2002;198(4):468–75.

    PubMed  Google Scholar 

  106. Tanaka K, Harashima N, Niiya F, Miyagi Y, Hida N, Ochi M, Imai N, Harada M, Itoh K, Shichijo S. Serine proteinase inhibitor 9 can be recognized by cytotoxic T lymphocytes of epithelial cancer patients. Jpn J Cancer Res. 2002;93(2):198–208.

    CAS  PubMed  Google Scholar 

  107. van Houdt IS, Oudejans JJ, van den Eertwegh AJ, Baars A, Vos W, Bladergroen BA, Rimoldi D, Muris JJ, Hooijberg E, Gundy CM, Meijer CJ, Kummer JA. Expression of the apoptosis inhibitor protease inhibitor 9 predicts clinical outcome in vaccinated patients with stage III and IV melanoma. Clin Cancer Res. 2005;11(17):6400–7.

    PubMed  Google Scholar 

  108. Classen CF, Ushmorov A, Bird P, Debatin KM. The granzyme B inhibitor PI-9 is differentially expressed in all main subtypes of pediatric acute lymphoblastic leukemias. Haematologica. 2004;89(11):1314–21.

    CAS  PubMed  Google Scholar 

  109. Tiacci E, Doring C, Brune V, van Noesel CJ, Klapper W, Mechtersheimer G, Falini B, Kuppers R, Hansmann ML. Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood. 2012;120(23):4609–20.

    CAS  PubMed  Google Scholar 

  110. Bossard C, Belhadj K, Reyes F, Martin-Garcia N, Berger F, Kummer JA, Briere J, Baglin AC, Cheze S, Bosq J, Ribrag V, Gisselbrecht C, Mounier N, Gaulard P. Expression of the granzyme B inhibitor PI9 predicts outcome in nasal NK/T-cell lymphoma: results of a Western series of 48 patients treated with first-line polychemotherapy within the Groupe d’Etude des Lymphomes de l’Adulte (GELA) trials. Blood. 2007;109(5):2183–9.

    CAS  PubMed  Google Scholar 

  111. ten Berge RL, Meijer CJ, Dukers DF, Kummer JA, Bladergroen BA, Vos W, Hack CE, Ossenkoppele GJ, Oudejans JJ. Expression levels of apoptosis-related proteins predict clinical outcome in anaplastic large cell lymphoma. Blood. 2002;99(12):4540–6.

    PubMed  Google Scholar 

  112. Kaiserman D, Knaggs S, Scarff KL, Gillard A, Mirza G, Cadman M, McKeone R, Denny P, Cooley J, Benarafa C, Remold-O’Donnell E, Ragoussis J, Bird PI. Comparison of human chromosome 6p25 with mouse chromosome 13 reveals a greatly expanded ov-serpin gene repertoire in the mouse. Genomics. 2002;79(3):349–62.

    CAS  PubMed  Google Scholar 

  113. Medema JP, Schuurhuis DH, Rea D, van Tongeren J, de Jong J, Bres SA, Laban S, Toes RE, Toebes M, Schumacher TN, Bladergroen BA, Ossendorp F, Kummer JA, Melief CJ, Offringa R. Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: differential modulation by T helper type 1 and type 2 cells. J Exp Med. 2001;194(5):657–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Kaiserman D, Bird CH, Sun J, Matthews A, Ung K, Whisstock JC, Thompson PE, Trapani JA, Bird PI. The major human and mouse granzymes are structurally and functionally divergent. J Cell Biol. 2006;175(4):619–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Sipione S, Simmen KC, Lord SJ, Motyka B, Ewen C, Shostak I, Rayat GR, Dufour JM, Korbutt GS, Rajotte RV, Bleackley RC. Identification of a novel human granzyme B inhibitor secreted by cultured sertoli cells. J Immunol. 2006;177(8):5051–8.

    CAS  PubMed  Google Scholar 

  116. Hill RM, Morresey KS, Coates LC, Mezey E, Fell B, Bratt T, Trapani JA, Birch NP. A new intracellular serine protease inhibitor expressed in the rat pituitary gland complexes with granzyme B. FEBS Lett. 1998;440(3):361–4.

    CAS  PubMed  Google Scholar 

  117. Sutton VR, Wowk ME, Cancilla M, Trapani JA. Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors. Immunity. 2003;18(3):319–29.

    CAS  PubMed  Google Scholar 

  118. Kitada S, Pedersen IM, Schimmer AD, Reed JC. Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene. 2002;21(21):3459–74.

    CAS  PubMed  Google Scholar 

  119. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood. 1993;81(11):3091–6.

    CAS  PubMed  Google Scholar 

  120. Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood. 1993;82(6):1820–8.

    CAS  PubMed  Google Scholar 

  121. Tothova E, Fricova M, Stecova N, Kafkova A, Elbertova A. High expression of Bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Neoplasma. 2002;49(3):141–4.

    CAS  PubMed  Google Scholar 

  122. Minn AJ, Rudin CM, Boise LH, Thompson CB. Expression of bcl-xL can confer a multidrug resistance phenotype. Blood. 1995;86(5):1903–10.

    CAS  PubMed  Google Scholar 

  123. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993;74(4):597–608.

    CAS  PubMed  Google Scholar 

  124. Zhou P, Qian L, Kozopas KM, Craig RW. Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood. 1997;89(2):630–43.

    CAS  PubMed  Google Scholar 

  125. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol. 2000;10(21):1359–66.

    CAS  PubMed  Google Scholar 

  126. Imoto I, Tsuda H, Hirasawa A, Miura M, Sakamoto M, Hirohashi S, Inazawa J. Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res. 2002;62(17):4860–6.

    CAS  PubMed  Google Scholar 

  127. Imoto I, Yang ZQ, Pimkhaokham A, Tsuda H, Shimada Y, Imamura M, Ohki M, Inazawa J. Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res. 2001;61(18):6629–34.

    CAS  PubMed  Google Scholar 

  128. Yang L, Cao Z, Yan H, Wood WC. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res. 2003;63(20):6815–24.

    CAS  PubMed  Google Scholar 

  129. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2002;3(6):401–10.

    CAS  PubMed  Google Scholar 

  130. Nachmias B, Ashhab Y, Ben-Yehuda D. The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol. 2004;14(4):231–43.

    CAS  PubMed  Google Scholar 

  131. Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64(20):7183–90.

    CAS  PubMed  Google Scholar 

  132. Hunter AM, LaCasse EC, Korneluk RG. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis. 2007;12(9):1543–68.

    CAS  PubMed  Google Scholar 

  133. Sedelies KA, Ciccone A, Clarke CJ, Oliaro J, Sutton VR, Scott FL, Silke J, Susanto O, Green DR, Johnstone RW, Bird PI, Trapani JA, Waterhouse NJ. Blocking granule-mediated death by primary human NK cells requires both protection of mitochondria and inhibition of caspase activity. Cell Death Differ.2008;15(4):708–17.

    CAS  PubMed  Google Scholar 

  134. LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP-targeted therapies for cancer. Oncogene. 2008;27(48):6252–75.

    CAS  PubMed  Google Scholar 

  135. Weyhenmeyer B, Murphy AC, Prehn JH, Murphy BM. Targeting the anti-apoptotic Bcl-2 family members for the treatment of cancer. Exp Oncol. 2012;34(3):192–9.

    CAS  PubMed  Google Scholar 

  136. El Haddad N, Moore R, Heathcote D, Mounayar M, Azzi J, Mfarrej B, Batal I, Ting C, Atkinson M, Sayegh MH, Ashton-Rickardt PG, Abdi R. The novel role of SERPINB9 in cytotoxic protection of human mesenchymal stem cells. J Immunol. 2011;187(5):2252–60.

    PubMed  Google Scholar 

  137. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11(1):59–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Mahrus S, Kisiel W, Craik CS. Granzyme M is a regulatory protease that inactivates proteinase inhibitor 9, an endogenous inhibitor of granzyme B. J Biol Chem. 2004;279(52):54275–82.

    CAS  PubMed  Google Scholar 

  139. Graziano RF, Tempest PR, White P, Keler T, Deo Y, Ghebremariam H, Coleman K, Pfefferkorn LC, Fanger MW, Guyre PM. Construction and characterization of a humanized anti-gamma-Ig receptor type I (Fc gamma RI) monoclonal antibody. J Immunol. 1995;155(10):4996–5002.

    CAS  PubMed  Google Scholar 

  140. de Kruif J, Tijmensen M, Goldsein J, Logtenberg T. Recombinant lipid-tagged antibody fragments as functional cell-surface receptors. Nat Med. 2000.6(2):223–7.

    PubMed  Google Scholar 

  141. Ball ED, Guyre PM, Shen L, Glynn JM, Maliszewski CR, Baker PE, Fanger MW. Gamma interferon induces monocytoid differentiation in the HL-60 cell line. J Clin Invest. 1984;73(4):1072–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Gallagher R, Collins S, Trujillo J, McCredie K, Ahearn M, Tsai S, Metzgar R, Aulakh G, Ting R, Ruscetti F, Gallo R. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 1979;54(3):713–33.

    CAS  PubMed  Google Scholar 

  143. Madison EL, Goldsmith EJ, Gerard RD, Gething MJ, Sambrook JF. Serpin-resistant mutants of human tissue-type plasminogen activator. Nature. 1989;339(6227):721–4.

    CAS  PubMed  Google Scholar 

  144. Losasso V, Schiffer S, Barth S, Carloni P. Design of human granzyme B variants resistant to serpin B9. Proteins. 2012;80(11):2514–22.

    CAS  PubMed  Google Scholar 

  145. Ye S, Cech AL, Belmares R, Bergstrom RC, Tong Y, Corey DR, Kanost MR, Goldsmith EJ. The structure of a Michaelis serpin-protease complex. Nat Struct Biol. 2001;8(11):979–83.

    CAS  PubMed  Google Scholar 

  146. Hedstrom L. Serine protease mechanism and specificity. Chem Rev. 2002;102(12):4501–24.

    CAS  PubMed  Google Scholar 

  147. Stein PE, Leslie AG, Finch JT, Turnell WG, McLaughlin PJ, Carrell RW. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature. 1990;347(6288):99–102.

    CAS  PubMed  Google Scholar 

  148. Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 2000;407(6806):923–6.

    CAS  PubMed  Google Scholar 

  149. Sun J, Whisstock JC, Harriott P, Walker B, Novak A, Thompson PE, Smith AI, Bird PI. Importance of the P4’ residue in human granzyme B inhibitors and substrates revealed by scanning mutagenesis of the proteinase inhibitor 9 reactive center loop. J Biol Chem. 2001;276(18):15177–84.

    CAS  PubMed  Google Scholar 

  150. Poe M, Blake JT, Boulton DA, Gammon M, Sigal NH, Wu JK, Zweerink HJ. Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J Biol Chem. 1991;266(1):98–103.

    CAS  PubMed  Google Scholar 

  151. Rotonda J, Garcia-Calvo M, Bull HG, Geissler WM, McKeever BM, Willoughby CA, Thornberry NA, Becker JW. The three-dimensional structure of human granzyme B compared to caspase-3, key mediators of cell death with cleavage specificity for aspartic acid in P1. Chem Biol. 2001;8(4):357–68.

    CAS  PubMed  Google Scholar 

  152. Kortemme T, Baker D. A simple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci U S A. 2002;99(22):14116–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Metkar SS, Wang B, Ebbs ML, Kim JH, Lee YJ, Raja SM, Froelich CJ. Granzyme B activates procaspase-3 which signals a mitochondrial amplification loop for maximal apoptosis. J Cell Biol. 2003;160(6):875–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Daeron M. Fc receptor biology. Annu Rev Immunol. 1997;15:203–34.

    CAS  PubMed  Google Scholar 

  155. Krasinskas AM, Wasik MA, Kamoun M, Schretzenmair R, Moore J, Salhany KE. The usefulness of CD64, other monocyte-associated antigens, and CD45 gating in the subclassification of acute myeloid leukemias with monocytic differentiation. Am J Clin Pathol. 1998;110(6):797–805.

    CAS  PubMed  Google Scholar 

  156. Ball ED, McDermott J, Griffin JD, Davey FR, Davis R, Bloomfield CD. Expression of the three myeloid cell-associated immunoglobulin G Fc receptors defined by murine monoclonal antibodies on normal bone marrow and acute leukemia cells. Blood.1989;73(7):1951–6.

    CAS  PubMed  Google Scholar 

  157. Frasnelli M, So A. Toll-like receptor 2 and toll-like receptor 4 expression on CD64+ monocytes in rheumatoid arthritis: comment on the article by Iwahashi et al. Arthritis Rheum. 2005;52(7):2227–8.

    PubMed  Google Scholar 

  158. van Roon JA, Bijlsma JW, van de Winkel JG, Lafeber FP. Depletion of synovial macrophages in rheumatoid arthritis by an anti-FcgammaRI-calicheamicin immunoconjugate. Ann Rheum Dis. 2005;64(6):865–70.

    PubMed Central  PubMed  Google Scholar 

  159. van de Winkel JG, Anderson CL. Biology of human immunoglobulin G Fc receptors. J Leukoc Biol. 1991;49(5):511–24.

    PubMed  Google Scholar 

  160. Dunphy CH, Tang W. The value of CD64 expression in distinguishing acute myeloid leukemia with monocytic differentiation from other subtypes of acute myeloid leukemia: a flow cytometric analysis of 64 cases. Arch Pathol Lab Med. 2007;131(5):748–54.

    CAS  PubMed  Google Scholar 

  161. Menendez P, del Canizo MC, Orfao A. Immunophenotypic characteristics of PB-mobilised CD34+ hematopoietic progenitor cells. J Biol Regul Homeost Agents. 2001;15(1):53–61.

    CAS  PubMed  Google Scholar 

  162. Stone RM, O’Donnell MR, Sekeres MA. Acute myeloid leukemia. Hematol Am Soc Hematol Educ Program. 2004;98–117.

    Google Scholar 

  163. Robak T, Wierzbowska A. Current and emerging therapies for acute myeloid leukemia. Clin Ther. 2009;31(Pt 2):2349–70.

    CAS  PubMed  Google Scholar 

  164. Smith M, Barnett M, Bassan R, Gatta G, Tondini C, Kern W. Adult acute myeloid leukaemia. Crit Rev Oncol Hematol. 2004;50(3):197–222.

    PubMed  Google Scholar 

  165. Fritsch S, Buske C, Wormann B, Wedding U, Hiddemann W, Spiekermann K. Therapy of acute myeloid leukemia (AML) for medically non-fit patients. Med Klin (Munich). 2007;102(4):324–9.

    Google Scholar 

  166. Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198–208.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Schiffer S, Rosinke R, Jost E, Hehmann-Titt G, Huhn M, Melmer G, Barth S, Thepen T. Targeted ex vivo reduction of CD64-positive monocytes in chronic myelomonocytic leukemia and acute myelomonocytic leukemia using human granzyme B-based cytolytic fusion proteins. Int J Cancer. 2014;135(6):1497–508.

    CAS  PubMed  Google Scholar 

  168. Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM. Bright far-red fluorescent protein for whole-body imaging. Nat Methods. 2007;4(9):741–6.

    CAS  PubMed  Google Scholar 

  169. Weremowicz S, Fox EA, Morton CC, Vallee BL. Localization of the human angiogenin gene to chromosome band 14q11, proximal to the T cell receptor alpha/delta locus. Am J Hum Genet. 1990;47(6):973–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry. 1985;24(20):5480–6.

    CAS  PubMed  Google Scholar 

  171. Strydom DJ, Fett JW, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL. Amino acid sequence of human tumor derived angiogenin. Biochemistry. 1985;24(20):5486–94.

    CAS  PubMed  Google Scholar 

  172. Zhang J, Zhang YP. Pseudogenization of the tumor-growth promoter angiogenin in a leaf-eating monkey. Gene. 2003;308:95–101.

    CAS  PubMed  Google Scholar 

  173. Kulka M, Fukuishi N, Metcalfe DD. Human mast cells synthesize and release angiogenin, a member of the ribonuclease A (RNase A) superfamily. J Leukoc Biol. 2009;86(5):1217–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Liote F, Champy R, Moenner M, Boval-Boizard B, Badet J. Elevated angiogenin levels in synovial fluid from patients with inflammatory arthritis and secretion of angiogenin by cultured synovial fibroblasts. Clin Exp Immunol. 2003;132(1):163–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Hu GF, Riordan JF, Vallee BL. A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proc Natl Acad Sci U S A. 1997;94(6):2204–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Gao X, Xu Z. Mechanisms of action of angiogenin. Acta Biochim Biophys Sin (Shanghai). 2008;40(7):619–24.

    CAS  Google Scholar 

  177. Kishikawa H, Wu D, Hu GF. Targeting angiogenin in therapy of amyotropic lateral sclerosis. Expert Opin Ther Targets. 2008;12(10):1229–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Dickson KA, Kang DK, Kwon YS, Kim JC, Leland PA, Kim BM, Chang SI, Raines RT. Ribonuclease inhibitor regulates neovascularization by human angiogenin. Biochemistry. 2009;48(18):3804–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Sadagopan S, Veettil MV, Chakraborty S, Sharma-Walia N, Paudel N, Bottero V, Chandran B. Angiogenin functionally interacts with p53 and regulates p53-mediated apoptosis and cell survival. Oncogene. 2012;31(46):4835–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Subramanian V, Feng Y. A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum Mol Genet. 2007;16(12):1445–53.

    CAS  PubMed  Google Scholar 

  181. Skorupa A, King MA, Aparicio IM, Dussmann H, Coughlan K, Breen B, Kieran D, Concannon CG, Marin P, Prehn JH. Motoneurons secrete angiogenin to induce RNA cleavage in astroglia. J Neurosci. 2012;32(15):5024–38.

    CAS  PubMed  Google Scholar 

  182. Steidinger TU, Standaert DG, Yacoubian TA. A neuroprotective role for angiogenin in models of Parkinson’s disease. J Neurochem. 2011;116(3):334–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Hu GF, Strydom DJ, Fett JW, Riordan JF, Vallee BL. Actin is a binding-protein for angiogenin. Proc Natl Acad Sci U S A. 1993;90(4):1217–1221.

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Strydom DJ. The angiogenins. Cell Mol Life Sci. 1998;54(8):811–24.

    CAS  PubMed  Google Scholar 

  185. Moroianu J, Riordan JF. Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci U S A. 1994;91(5):1677–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Wiedlocha A. Following angiogenin during angiogenesis: a journey from the cell surface to the nucleolus. Arch Immunol Ther Exp (Warsz). 1999;47(5):299–305.

    CAS  Google Scholar 

  187. Hu G, Xu C, Riordan JF. Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA. J Cell Biochem. 2000;76(3):452–62.

    CAS  PubMed  Google Scholar 

  188. Moroianu J, Riordan JF. Identification of the nucleolar targeting signal of human angiogenin. Biochem Biophys Res Commun. 1994;203(3):1765–72.

    CAS  PubMed  Google Scholar 

  189. Olson KA, Fett JW, French TC, Key ME, Vallee BL. Angiogenin antagonists prevent tumor growth in vivo. Proc Natl Acad Sci U S A. 1995;92(2):442–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Sheng J, Yu W, Gao X, Xu Z, Hu GF. Angiogenin stimulates ribosomal RNA transcription by epigenetic activation of the ribosomal DNA promoter. J Cell Physiol. 2014;229(4):521–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Pizzo E, Sarcinelli C, Sheng J, Fusco S, Formiggini F, Netti P, Yu W, D’Alessio G, Hu GF. Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival. J Cell Sci. 2013;126(Pt 18):4308–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Blazquez M, Fominaya JM, Hofsteenge J. Oxidation of sulfhydryl groups of ribonuclease inhibitor in epithelial cells is sufficient for its intracellular degradation. J Biol Chem. 1996;271(31):18638–42.

    CAS  PubMed  Google Scholar 

  193. Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem. 2010;285(14):10959–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. St Clair DK, Rybak SM, Riordan JF, Vallee BL. Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes. Proc Natl Acad Sci U S A. 1987;84(23):8330–4.

    Google Scholar 

  195. Czech A, Wende S, Morl M, Pan T, Ignatova Z. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet. 2013;9(8):e1003767.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24(15):1590–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Schiffer S, Hristodorov D, Mladenov R, Aslanian E, Huhn M, Fischer R, Barth S, Thepen T. Species-dependent functionality of the human cytolytic fusion proteins granzyme B-H22(scFv) and H22(scFv)-angiogenin in macrophages. Antibodies. 2013;2(1):9–18.

    CAS  Google Scholar 

  198. Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell. 2011;43(4):613–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Rybak SM, Vallee BL. Base cleavage specificity of angiogenin with Saccharomyces cerevisiae and Escherichia coli 5S RNAs. Biochemistry. 1988;27(7):2288–94.

    CAS  PubMed  Google Scholar 

  200. Saxena SK, Rybak SM, Davey RT Jr, Youle RJ, Ackerman EJ. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J Biol Chem. 1992;267(30):21982–6.

    CAS  PubMed  Google Scholar 

  201. Shapiro R, Riordan JF, Vallee BL. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry. 1986;25(12):3527–32.

    CAS  PubMed  Google Scholar 

  202. Yamasaki S, Ivanov P, Hu GF, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol. 2009;185(1):35–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Anderson P, Kedersha N. Stress granules. Curr Biol. 2009;19(10):R397–8.

    CAS  PubMed  Google Scholar 

  204. Nawrot B, Sochacka E, Duchler M. tRNA structural and functional changes induced by oxidative stress. Cell Mol Life Sci. 2011;68(24):4023–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284(27):17897–901.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Saikia M, Jobava R, Parisien M, Putnam A, Krokowski D, Gao XH, Guan BJ, Yuan Y, Jankowsky E, Feng Z, Hu GF, Pusztai-Carey M, Gorla M, Sepuri NB, Pan T, Hatzoglou M. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol. 2014;34(13):2450–63.

    PubMed Central  PubMed  Google Scholar 

  207. Saelens X, Kalai M, Vandenabeele P. Translation inhibition in apoptosis: caspase-dependent PKR activation and eIF2-alpha phosphorylation. J Biol Chem. 2001;276(45):41620–8.

    CAS  PubMed  Google Scholar 

  208. Liu B, Qian SB. Translational reprogramming in cellular stress response. Wiley Interdiscip Rev RNA. 2014;5(3):301–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Thomas MG, Loschi M, Desbats MA, Boccaccio GL. RNA granules: the good, the bad and the ugly. Cell Signal. 2011;23(2):324–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Newton DL, Xue Y, Olson KA, Fett JW, Rybak SM. Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains. Biochemistry. 1996;35(2):545–53.

    CAS  PubMed  Google Scholar 

  211. Yoon JM, Han SH, Kown OB, Kim SH, Park MH, Kim BK. Cloning and cytotoxicity of fusion proteins of EGF and angiogenin. Life Sci. 1999;64(16):1435–1445.

    CAS  PubMed  Google Scholar 

  212. Stocker M, Tur MK, Sasse S, Krussmann A, Barth S, Engert A. Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293 T-cells. Protein Expr Purif. 2003;28(2):211–9.

    CAS  PubMed  Google Scholar 

  213. Reiners KS, Hansen HP, Krussmann A, Schon G, Csernok E, Gross WL, Engert A, Von Strandmann EP. Selective killing of B-cell hybridomas targeting proteinase 3, Wegener’s autoantigen. Immunology. 2004;112(2):228–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Hetzel C, Bachran C, Fischer R, Fuchs H, Barth S, Stocker M. Small cleavable adapters enhance the specific cytotoxicity of a humanized immunotoxin directed against CD64-positive cells. J Immunother. 2008;31(4):370–6.

    CAS  PubMed  Google Scholar 

  215. Tur MK, Huhn M, Thepen T, Stocker M, Krohn R, Vogel S, Jost E, Osieka R, van de Winkel JG, Fischer R, Finnern R, Barth S. Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Cancer Res. 2003;63(23):8414–9.

    CAS  PubMed  Google Scholar 

  216. Barth S, Huhn M, Matthey B, Tawadros S, Schnell R, Schinkothe T, Diehl V, Engert A. Ki-4(scFv)-ETA’, a new recombinant anti-CD30 immunotoxin with highly specific cytotoxic activity against disseminated Hodgkin tumors in SCID mice. Blood. 2000;95(12):3909–14.

    CAS  PubMed  Google Scholar 

  217. Bruell D, Bruns CJ, Yezhelyev M, Huhn M, Muller J, Ischenko I, Fischer R, Finnern R, Jauch KW, Barth S. Recombinant anti-EGFR immunotoxin 425(scFv)-ETA’ demonstrates anti-tumor activity against disseminated human pancreatic cancer in nude mice. Int J Mol Med. 2005;15(2):305–13.

    CAS  PubMed  Google Scholar 

  218. Singh R, Samant U, Hyland S, Chaudhari PR, Wels WS, Bandyopadhyay D. Target-specific cytotoxic activity of recombinant immunotoxin scFv(MUC1)-ETA on breast carcinoma cells and primary breast tumors. Mol Cancer Ther. 2007;6(2):562–9.

    CAS  PubMed  Google Scholar 

  219. Berges N, Hehmann-Titt G, Hristodorov D, Melmer G, Thepen T, Barth S. Human cytolytic fusion proteins: modified versions of human granzyme B and angiogenin have the potential to replace bacterial toxins in targeted therapies against CD64+ diseases. Antibodies. 2014;3:92–115.

    CAS  Google Scholar 

  220. Haigis MC, Kurten EL, Raines RT. Ribonuclease inhibitor as an intracellular sentry. Nucleic Acids Res. 2003;31(3):1024–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Rutkoski TJ, Raines RT. Evasion of ribonuclease inhibitor as a determinant of ribonuclease cytotoxicity. Curr Pharm Biotechnol. 2008;9(3):185–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  222. De Lorenzo C, Di Malta C, Cali G, Troise F, Nitsch L, D’Alessio G. Intracellular route and mechanism of action of ERB-hRNase, a human anti-ErbB2 anticancer immunoagent. FEBS Lett. 2007;581(2):296–300.

    PubMed  Google Scholar 

  223. Furia A, Moscato M, Cali G, Pizzo E, Confalone E, Amoroso MR, Esposito F, Nitsch L, D’Alessio G. The ribonuclease/angiogenin inhibitor is also present in mitochondria and nuclei. FEBS Lett. 2011;585(4):613–7.

    CAS  PubMed  Google Scholar 

  224. Lee FS, Vallee BL. Binding of placental ribonuclease inhibitor to the active site of angiogenin. Biochemistry. 1989;28(8):3556–61.

    CAS  PubMed  Google Scholar 

  225. Shapiro R, Vallee BL. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc Natl Acad Sci U S A. 1987;84(8):2238–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Erickson HA, Jund MD, Pennell CA. Cytotoxicity of human RNase-based immunotoxins requires cytosolic access and resistance to ribonuclease inhibition. Protein Eng Des Sel. 2006;19(1):37–45.

    CAS  PubMed  Google Scholar 

  227. Lee FS, Vallee BL. Structure and action of mammalian ribonuclease (angiogenin) inhibitor. Prog Nucleic Acid Res Mol Biol. 1993;44:1–30.

    CAS  PubMed  Google Scholar 

  228. Leland PA, Raines RT. Cancer chemotherapy-ribonucleases to the rescue. Chem Biol. 2001;8(5):405–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Bretscher LE, Abel RL, Raines RT. A ribonuclease A variant with low catalytic activity but high cytotoxicity. J Biol Chem. 2000;275(14):9893–6.

    CAS  PubMed  Google Scholar 

  230. Newton DL, Hansen HJ, Mikulski SM, Goldenberg DM, Rybak SM. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood. 2001;97(2):528–35.

    CAS  PubMed  Google Scholar 

  231. Zewe M, Rybak SM, Dübel S, Coy JF, Welschof M, Newton DL, Little M. Cloning and cytotoxicity of a human pancreatic RNase immunofusion. Immunotechnology. 1997;3(2):127–136.

    CAS  PubMed  Google Scholar 

  232. Mikulski S, Grossman A, Carter P, Shogen K, Costanzi J. Phase-I human clinical-trial of onconase(r) (p-30 protein) administered intravenously on a weekly schedule in cancer-patients with solid tumors. Int J Oncol. 1993;3(1):57–64.

    CAS  PubMed  Google Scholar 

  233. Mikulski SM, Costanzi JJ, Vogelzang NJ, McCachren S, Taub RN, Chun H, Mittelman A, Panella T, Puccio C, Fine R, Shogen K. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol. 2002;20(1):274–81.

    CAS  PubMed  Google Scholar 

  234. Pavlakis N, Vogelzang NJ. Ranpirnase—an antitumour ribonuclease: its potential role in malignant mesothelioma. Expert Opin Biol Ther. 2006;6(4):391–9.

    CAS  PubMed  Google Scholar 

  235. Reck M, Krzakowski M, Jassem J, Eschbach C, Kozielski J, Costanzi JJ, Gatzemeier U, Shogen K, von Pawel J. Randomized, multicenter phase III study of ranpirnase plus doxorubicin (DOX) versus DOX in patients with unresectable malignant mesothelioma (MM). ASCO Meet Abstr. 2009;27(15 S):7507.

    Google Scholar 

  236. Zhao J, Wang Z, Yu CJ, Cao YX, Zhang L, Wang CJ, Yang AG. Growth inhibitory effects of recombinant granzyme B containing different N-terminal translocating peptides. Sheng Wu Gong Cheng Xue Bao. 2004;20(4):501–6.

    CAS  PubMed  Google Scholar 

  237. Haigis MC, Kurten EL, Abel RL, Raines RT. KFERQ sequence in ribonuclease A-mediated cytotoxicity. J Biol Chem. 2002;277(13):11576–81.

    CAS  PubMed  Google Scholar 

  238. Smith BD, Raines RT. Genetic selection for peptide inhibitors of angiogenin. Protein Eng Des Sel. 2008;21(5):289–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Acharya KR, Shapiro R, Allen SC, Riordan JF, Vallee BL. Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease. Proc Natl Acad Sci U S A. 1994;91(8):2915–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Leonidas DD, Shapiro R, Subbarao GV, Russo A, Acharya KR. Crystallographic studies on the role of the C-terminal segment of human angiogenin in defining enzymatic potency. Biochemistry. 2002;41(8):2552–62.

    CAS  PubMed  Google Scholar 

  241. Russo N, Shapiro R, Acharya KR, Riordan JF, Vallee BL. Role of glutamine-117 in the ribonucleolytic activity of human angiogenin. Proc Natl Acad Sci U S A. 1994;91(8):2920–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Cremer C, Vierbuchen T, Hein L, Fischer R, Barth S, Nachreiner T. Angiogenin mutants as novel effector molecules for the generation of fusion proteins with increased cytotoxic potential. J Immunother. 2014. doi:10.1097/CJI.0000000000000053.

    Google Scholar 

  243. Leland PA, Staniszewski KE, Kim BM, Raines RT. Endowing human pancreatic ribonuclease with toxicity for cancer cells. J Biol Chem. 2001;276(46):43095–102.

    CAS  PubMed  Google Scholar 

  244. Piccoli R, Di Gaetano S, De Lorenzo C, Grauso M, Monaco C, Spalletti-Cernia D, Laccetti P, Cinatl J, Matousek J, D’Alessio G. A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc Natl Acad Sci U S A. 1999;96(14):7768–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  245. Murthy BS, De Lorenzo C, Piccoli R, D’Alessio G, Sirdeshmukh R. Effects of protein RNase inhibitor and substrate on the quaternary structures of bovine seminal RNase. Biochemistry. 1996;35(13):3880–5.

    CAS  PubMed  Google Scholar 

  246. Chen CZ, Shapiro R. Site-specific mutagenesis reveals differences in the structural bases for tight binding of RNase inhibitor to angiogenin and RNase A. Proc Natl Acad Sci U S A. 1997;94(5):1761–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Chen CZ, Shapiro R. Superadditive and subadditive effects of “hot spot” mutations within the interfaces of placental ribonuclease inhibitor with angiogenin and ribonuclease A. Biochemistry. 1999;38(29):9273–85.

    CAS  PubMed  Google Scholar 

  248. Wei H, Bera TK, Wayne AS, Xiang L, Colantonio S, Chertov O, Pastan I. A modified form of diphthamide causes immunotoxin resistance in a lymphoma cell line with a deletion of the WDR85 gene. J Biol Chem. 2013;288(17):12305–12.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by a grant from the Germany province NRW from EFRE “European Fund for Regional Development” under the theme “Europe—Investment in our Future” and by grant BA 1772/18-1 from the Deutsche Forschungsgemeinschaft (DFG). The authors would like to thank Valeria Losasso and Xiaojing Cong for in silico simulations and Richard M. Twyman for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cremer, C. et al. (2015). Engineered Versions of Granzyme B and Angiogenin Overcome Intrinsic Resistance to Apoptosis Mediated by Human Cytolytic Fusion Proteins. In: Verma, R., Bonavida, B. (eds) Resistance to Immunotoxins in Cancer Therapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-17275-0_8

Download citation

Publish with us

Policies and ethics