Skip to main content

A Complex Network Approach to Investigate the Spatiotemporal Co-variability of Extreme Rainfall

  • Conference paper
  • 2573 Accesses

Abstract

The analysis of spatial patterns of co-variability of extreme rainfall is challenging because traditional techniques based on principal component analysis of the covariance matrix only capture the first two statistical moments of the data distribution and are thus not suitable to analyze the behavior in the tails of the respective distributions. Here, we describe an alternative to these techniques which is based on the combination of a nonlinear synchronization measure and complex network theory. This approach allows to derive spatial patterns encoding the co-variability of extreme rainfall at different locations. By introducing suitable network measures, the methodology can be used to perform climatological analysis but also for statistical prediction of extreme rainfall events. We introduce the methodological framework and present applications to high-spatiotemporal resolution rainfall data (TRMM 3B42) over South America.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Boers N, Bookhagen B, Marwan N, Kurths J, Marengo J (2013) Complex networks identify spatial patterns of extreme rainfall events of the South American monsoon system. Geophys Res Lett 40(16):4386–4392. doi:10.1002/grl.50681, http://doi.wiley.com/10.1002/grl.50681

  • Boers N, Bookhagen B, Barbosa HMJ, Marwan N, Kurths J, Marengo J (2014a) Prediction of extreme floods in the Eastern Central Andes based on a complex network approach. Nat Commun 5:5199. doi:10.1038/ncomms6199

    Article  Google Scholar 

  • Boers N, Donner RV, Bookhagen B, Kurths J (2014b) Complex network analysis helps to identify impacts of the El Niño Southern Oscillation on moisture divergence in South America. Clim Dyn (online first). doi:10.1007/s00382-014-2265-7

    Google Scholar 

  • Boers N, Rheinwalt A, Bookhagen B, Barbosa HMJ, Marwan N, Marengo JA, Kurths J (2014c) The South American rainfall dipole: a complex network analysis of extreme events. Geophys Res Lett 41(20):1944–8007. doi:10.1002/2014GL061829

    Article  Google Scholar 

  • Boers N, Bookhagen B, Marengo J, Marwan N, von Sorch JS, Kurths J (2015a) Extreme rainfall of the South American monsoon system: a dataset comparison using complex networks. J Clim 28(3):1031–1056. doi:10.1175/JCLI-D-14-00340.1

    Article  Google Scholar 

  • Boers N, Bookhagen B, Marwan N, Kurths J (2015b) Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes mountain range. Clim Dyn (online first). doi:10.1007/s00382-015-2601-6

    Google Scholar 

  • Bookhagen B, Strecker MR (2008) Orographic barriers, high-resolution TRMM rainfall, and relief variations along the Eastern Andes. Geophys Res Lett 35(6):L06403. doi:10.1029/2007GL032011, http://www.agu.org/pubs/crossref/2008/2007GL032011.shtml

  • Carvalho LMV, Jones C, Liebmann B (2002) Extreme precipitation events in Southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15(17):2377–2394

    Article  Google Scholar 

  • Carvalho L, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108. http://journals.ametsoc.org/doi/pdf/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2

  • Carvalho LMV, Silva AE, Jones C, Liebmann B, Silva Dias PL, Rocha HR (2010) Moisture transport and intraseasonal variability in the South America monsoon system. Clim Dyn 36(9–10):1865–1880. doi:10.1007/s00382-010-0806-2, http://www.springerlink.com/index/10.1007/s00382-010-0806-2

  • Cohen JCP, Silva Dias MAFS, Nobre CA (1995) Environmental conditions associated with Amazonian squall lines: a case study. Mon Weather Rev 123(11):3163–3174. http://cat.inist.fr/?aModele=afficheN&cpsidt=3697315

  • Donges JF, Zou Y, Marwan N, Kurths J (2009a) Complex networks in climate dynamics. Eur Phys J Spec Top 174(1):157–179

    Article  Google Scholar 

  • Donges JF, Zou Y, Marwan N, Kurths J (2009b) The backbone of the climate network. EPL (Europhys Lett) 87(4):48007

    Article  Google Scholar 

  • Donges JF, Schultz H, Marwan N, Zou Y, Kurths J (2011) Investigating the topology of interacting networks – theory and application to coupled climate subnetworks. Eur Phys J B 84(4):635–651

    Article  Google Scholar 

  • Durkee JD, Mote TL, Shepherd JM (2009) The contribution of mesoscale convective complexes to rainfall across subtropical South America. J Clim 22(17):4590–4605. doi:10.1175/2009JCLI2858.1, http://journals.ametsoc.org/doi/abs/10.1175/2009JCLI2858.1

  • Eltahir EAB, Bras RL (1993) Precipitation recycling in the Amazon basin. Q J R Meteorol Soc 120(518):861–880. doi:10.1002/qj.49712051806, http://doi.wiley.com/10.1002/qj.49712051806

  • Gozolchiani A, Havlin S, Yamasaki K (2011) Emergence of El Niño as an autonomous component in the climate network. Phys Rev Lett 107(14):148501. doi:10.1103/PhysRevLett.107.148501, http://link.aps.org/doi/10.1103/PhysRevLett.107.148501

  • Huffman G, Bolvin D, Nelkin E, Wolff D, Adler R, Gu G, Hong Y, Bowman K, Stocker E (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Ludescher J, Gozolchiani A, Bogachev MI, Bunde A, Havlin S, Schellnhuber HJ (2013) Improved El Niño forecasting by cooperativity detection. Proc Natl Acad Sci 110(29):11742–11745

    Article  Google Scholar 

  • Malik N, Bookhagen B, Marwan N, Kurths J (2012) Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Clim Dyn 39(3):971–987. doi:10.1007/s00382-011-1156-4, http://www.springerlink.com/index/10.1007/s00382-011-1156-4

  • Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyses: characteristics and temporal variability. J Clim 17(12):2261–2280

    Article  Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PL, Cavalcanti IFA, Carvalho LMV, Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogues-Paegle J, Zipser E, Seth A, Alves LM (2012) Recent developments on the South American monsoon system. Int J Clim 32(1):1–21

    Article  Google Scholar 

  • Nogués-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125(2):279–291

    Article  Google Scholar 

  • Quian Quiroga R, Kreuz T, Grassberger P (2002) Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E 66(4):41904

    Article  Google Scholar 

  • Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over Southeastern South America and their relationship with the South American low-level jet. Mon Weather Rev 135(4):1290–1309. doi:10.1175/MWR3305.1, http://journals.ametsoc.org/doi/abs/10.1175/MWR3305.1

  • Siqueira JR, Machado LAT (2004) Influence of the frontal systems on the day-to-day convection variability over South America. J Clim 17(9):1754–1766. http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(2004)017<1754:IOTFSO>2.0.CO;2

  • Steinhaeuser K, Ganguly AR, Chawla NV (2012) Multivariate and multiscale dependence in the global climate system revealed through complex networks. Clim Dyn 39(3–4):889–895

    Article  Google Scholar 

  • Stolbova V, Martin P, Bookhagen B, Marwan N, Kurths J (2014) Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka. Nonlinear Process Geophys 21:901–917

    Article  Google Scholar 

  • Tsonis AA, Roebber PJ (2004) The architecture of the climate network. Phys A Stat Mech Appl 333:497–504. doi:10.1016/j.physa.2003.10.045, http://www.sciencedirect.com/science/article/pii/S0378437103009646

  • Tsonis AA, Swanson KL (2008) Topology and predictability of El Niño and La Niña networks. Phys Rev Lett 100(22):228502

    Article  Google Scholar 

  • Van Der Mheen M, Dijkstra HA, Gozolchiani A, Den Toom M, Feng Q, Kurths J, Hernandez-Garcia E (2013) Interaction network based early warning indicators for the Atlantic MOC collapse. Geophys Res Lett 40(11):2714–2719. doi:10.1002/grl.50515

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud RD, Gochis D, Gutzler D, Lettenmaier D, Marengo JA, Mechoso CR, Nogues-Paegle J, Silva Dias P, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000. http://journals.ametsoc.org/doi/pdf/10.1175/JCLI3896.1

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11(5):1020–1040

    Article  Google Scholar 

  • Zipser EJ, Cecil DJ, Liu C, Nesbitt SW, Yorty DP (2006) Where are the most intense thunderstorms on Earth? Bull Am Meteorol Soc 87(8):1057–1071. doi:10.1175/BAMS-87-8-1057, http://journals.ametsoc.org/doi/abs/10.1175/BAMS-87-8-1057

Download references

Acknowledgements

This work was developed within the scope of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP, and the DFG project “Investigation of past and present climate dynamics and its stability by means of a spatio-temporal analysis of climate data using complex networks” (MA 4759/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Boers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Boers, N., Rheinwalt, A., Bookhagen, B., Marwan, N., Kurths, J. (2015). A Complex Network Approach to Investigate the Spatiotemporal Co-variability of Extreme Rainfall. In: Lakshmanan, V., Gilleland, E., McGovern, A., Tingley, M. (eds) Machine Learning and Data Mining Approaches to Climate Science. Springer, Cham. https://doi.org/10.1007/978-3-319-17220-0_15

Download citation

Publish with us

Policies and ethics