Evaluation of Global Climate Models Based on Global Impacts of ENSO

  • Saurabh Agrawal
  • Trent Rehberger
  • Stefan Liess
  • Gowtham Atluri
  • Vipin Kumar

Abstract

Global climate models (GCMs) play a vital role in understanding climate variability and estimating climate change at global and regional scales. Therefore, it becomes crucial to have an appropriate evaluation strategy for evaluating these models. A lot of work has been done to evaluate the ENSO simulations of different GCMs. However, they do not consider how well a GCM simulates the impact of ENSO all over the globe. Therefore, in this work, we used this criteria to evaluate the Coupled Model Intercomparison Project (CMIP5) GCMs. We found that the global impact of ENSO in CNRM-CM5, GFDL-CM3, and CESM-FASTCHEM is highly similar to that of observations.

Keywords

Earth Mover’s distance Metric for comparing spatial maps EMD bank Teleconnections 

References

  1. Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20(6):1071–1092CrossRefGoogle Scholar
  2. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12(7):1990–2009CrossRefGoogle Scholar
  3. Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the behavioral sciences. Lawrence Erlbaum, MahwahGoogle Scholar
  4. Flato G, Marotzke J, Abiodun B et al (2013) 2013: evaluation of climate models. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  5. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res Atmos 113(D6). doi: 10.1029/2007JD008972
  6. Hitchcock FL (1941) The distribution of a product from several sources to numerous localities. J Math Phys 20(2):224–230Google Scholar
  7. Kawale J, Liess S, Kumar A, Steinbach M, Snyder P, Kumar V et al (2013) A graph-based approach to find teleconnections in climate data. Stat Anal Data Mining 6(3):158–179CrossRefGoogle Scholar
  8. Kim S, Cai W, Jin F-F, Yu J-Y (2014) English ENSO stability in coupled climate models and its association with mean state. Engl Clim Dyn 42(11–12):3313–3321. [Online] Available: http://dx.doi.org/10.1007/s00382-013-1833-6
  9. Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267CrossRefGoogle Scholar
  10. Lau N-C, Nath MJ (2000) Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J Clim 13(24):4287–4309CrossRefGoogle Scholar
  11. Ljosa V, Bhattacharya A, Singh AK (2006) Indexing spatially sensitive distance measures using multi-resolution lower bounds. In: Advances in database technology-EDBT 2006, Munich. Springer, pp 865–883Google Scholar
  12. Moise AF, Delage FP (2011) New climate model metrics based on object-orientated pattern matching of rainfall. J Geophys Res Atmos (1984–2012) 116(D12):D14209. doi:10.1029/2007JD009334
  13. Peleg S, Werman M, Rom H (1989) A unified approach to the change of resolution: space and gray-level. IEEE Trans Pattern Anal Mach Intell 11(7):739–742CrossRefGoogle Scholar
  14. Pincus R, Batstone CP, Hofmann RJP, Taylor KE, Glecker PJ (2008) Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J Geophys Res Atmos (113)(D14):D12108. doi:10.1029/2010JD015318 [Online] Available: http://dx.doi.org/10.1029/2007JD009334
  15. Risbey JS, Lewandowsky S, Langlais C, Monselesan DP, O’Kane TJ, Oreskes N (2014) Well-estimated global surface warming in climate projections selected for ENSO phase. Nat Clim Change 4:835–840CrossRefGoogle Scholar
  16. Rubner Y, Tomasi C, Guibas LJ (1998) A metric for distributions with applications to image databases. In: Sixth international conference on computer vision, Bombay. IEEE, pp 59–66Google Scholar
  17. Taschetto AS, Gupta AS, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27(8):2861–2885CrossRefGoogle Scholar
  18. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498CrossRefGoogle Scholar
  19. Tsonis A, Steinhaeuser K (2013) A climate model intercomparison at the dynamics level. In: EGU general assembly conference abstracts, Vienna, vol 15, p 1565Google Scholar
  20. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13(9):1517–1536CrossRefGoogle Scholar
  21. Zhang T, Sun D-Z (2014) ENSO asymmetry in CMIP5 models. J Clim 27(11):4070–4093CrossRefGoogle Scholar
  22. Zieba A (2010) Effective number of observations and unbiased estimators of variance for autocorrelated data-an overview. Metrol Meas Syst 17(1):3–16Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Saurabh Agrawal
    • 1
  • Trent Rehberger
    • 2
  • Stefan Liess
    • 3
  • Gowtham Atluri
    • 1
  • Vipin Kumar
    • 1
  1. 1.Department of Computer ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Electrical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Soil, Water, and ClimateUniversity of MinnesotaMinneapolisUSA

Personalised recommendations