Skip to main content

Why Value ‘Blue Carbon’?

  • Chapter
Coastal Zones Ecosystem Services

Abstract

This chapter intends examine the potential of blue carbon storage ecosystem services to contribute to a healthy climate and to support future protection for the coastal and marine habitats. Coastal ecosystems store ‘blue carbon’ but this provision is currently not protected by any international climate agreement or mechanism. Using scenario analysis, the chapter aims to develop a better understanding of the measurement and valuation of carbon stored and sequestered in coastal and marine ecosystems. Case studies of saltmarshes and seagrasses in England and Europe provide the main focus. Two main scenarios are presented. In one scenario, current environmental protection policies continue to be implemented. In a second scenario, a combination of factors (e.g. less environmental protection, more significant climate change impacts and increased marine pollution) lead to large habitat loss. The loss may be sufficient to lead to the functional extinction of some seagrass species, and hence the services they provide. The on-going debate about the definition of stock and flows of ecosystem services both in biophysical and economic terms and their related valuation issues are also explored based on a carbon cycle example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    EU Allowance (EUA) is a mean price of traded carbon in the European Union emissions trading scheme (EU ETS), which is the first and the largest international system for trading greenhouse gas emission allowances in operation.

  2. 2.

    When attributing a monetary value to an amount of carbon ($tC) or carbon dioxide ($tCO2) respectively, the actual carbon content of carbon dioxide has to be taken into account to ensure the “damage cost” is normalised between the two units of measure. CO2 weights 44 g/mol, of which 12 g/mol is the mass of carbon and 32 g/mol the mass of the two oxygen atoms. Therefore the carbon content (and associated value/damage cost) of carbon dioxide is 12/44 (just over 25 %) of the value of pure carbon, or in reverse the value of 1 t of carbon is 44/12 (approximately 4 times) that of 1 t of carbon dioxide. This implies that the monetary value of the damage cost presented in $tC is equivalent to the damage cost presented in $tCO2.

References

  • Adams, C. A., Andrews, J. E., & Jickells, T. D. (2012). Nitrous oxide and methane fluxes vs. carbon and nutrient burial in new intertidal and salt marsh sediments. Science of the Total Environment, 434, 240–251.

    Article  Google Scholar 

  • Allen, J. R. L., & Rae, J. E. (1987). Late Flandrian shoreline oscillations in The Severn Estuary: A geomorphological and stratigraphical reconnaissance. Philosophical Transactions of the Royal Society of London, Series B, 315, 185–230.

    Article  Google Scholar 

  • Andrews, J. E., Samways, G., Dennis, P. F., & Maher, B. A. (2000). Origin, abundance and storage of organic carbon and sulphur in the Holocene Humber Estuary - Emphasising human impact on storage changes. In I. Shennan & J. E. Andrews (Eds.), Holocene land-ocean interaction and environmental change around the North Sea (Geological Society special publication No. 166, pp. 145–170). London: Geological Society.

    Google Scholar 

  • Andrews, J. E., Burgess, D., Cave, R. R., Coomes, E. G., Jickells, T. D., Parkes, D. J., & Turner, R. K. (2006). Biogeochemical value of managed realignment, Humber estuary UK. Science of the Total Environment, 371, 19–30.

    Article  Google Scholar 

  • Andrews, J. E., Samways, G., & Shimmield, G. B. (2008). Historical storage budgets of organic carbon, nutrient and contaminant elements in saltmarsh sediments: Biogeochemical context for managed realignment, Humber Estuary, UK. Science of the Total Environment, 405, 1–13.

    Article  Google Scholar 

  • Andrews, J. E., Jickells, T. D., Adams, C. A., Parkes, D. J., & Kelly, S. D. (2011). Sediment record and storage of organic carbon and the nutrient elements (N, P, and Si) in estuaries and near-coastal seas. In E. Wolanskiand & D. S. McLusky (Eds.), Treatise on estuarine and coastal science (Vol. 4, pp. 9–38). Waltham: Academic.

    Chapter  Google Scholar 

  • Banzhaf, H. S., & Boyd, J. (2012). The architecture and measurement of an ecosystem services index. Sustainability, 4, 430–461.

    Article  Google Scholar 

  • Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81, 169–193.

    Article  Google Scholar 

  • Beaumont, N. J., Jones, L., Garbutt, A., Hansom, J. D., & Toberman, M. (2014). The value of carbon sequestration and storage in coastal habitats. Estuarine, Coastal & Shelf Science, 137, 32–40.

    Article  Google Scholar 

  • Bianchi, T. S. (2007). Biogeochemistry of estuaries. Oxford: Oxford University Press.

    Google Scholar 

  • Boyes, S. J., & Elliott, M. (2006). Organic matter and nutrient inputs to the Humber Estuary, England. Marine Pollution Bulletin, 53(1-4), 136–143.

    Article  Google Scholar 

  • Cebrian, J., Duarte, C., Marba, N., & Enriquez, S. (1997). Magnitude and fate of the production of four co occurring western Mediterranean seagrass species. Marine Ecology Progress Series, 155, 29–44.

    Article  Google Scholar 

  • Chevallier, J. (2010). Carbon prices during the EU ETS phase II: Dynamics and volume analysis. http://econpapers.repec.org/paper/halwpaper/halshs-00459140.htm

  • Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17, 1111.

    Article  Google Scholar 

  • Costanza, R., d’Arge, R., de Groot, R. S., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neil, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  Google Scholar 

  • Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., & Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change, 26, 152–158.

    Article  Google Scholar 

  • da Silva Copertino, M. (2011). Add coastal vegetation to the climate critical list. Nature, 473(7347), 255.

    Article  Google Scholar 

  • Dagley, J. R. (1995). Northey Island managed retreat scheme (English Nature Research Reports, No. 128). Peterborough: English Nature.

    Google Scholar 

  • Department of Energy and Climate Change (DECC). (2011). A brief guide to the carbon valuation methodology for UK policy appraisal. London: Department of Energy and Climate Change.

    Google Scholar 

  • Department of Energy and Climate Change (DECC). (2013). Updated short-term traded carbon values used for UK public policy appraisal. 16 Sept 2013.

    Google Scholar 

  • Edwards, A. M. C., & Winn, P. S. J. (2006). The Humber Estuary, Eastern England: Strategic planning of flood defences and habitats. Marine Pollution Bulletin, 53, 165–174.

    Article  Google Scholar 

  • Elliott, M., Cutts, N. D., & Trono, A. (2014). A typology of marine and estuarine hazards and risks as vectors of change: A review for vulnerable coasts and their management. Ocean & Coastal Management, 93, 88–99.

    Article  Google Scholar 

  • Fisher, B., Turner, R. K., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological Economics, 68(3), 643–653.

    Article  Google Scholar 

  • Fourqurean, J.W. et al. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience. 5, 505–509. doi:http://www.nature.com/ngeo/journal/v5/n7/abs/ngeo1477.html#supplementary-information.

  • Gacia, E., Duarte, C. M., & Middelburg, J. J. (2002). Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnology and Oceanography, 47(1), 23–32.

    Article  Google Scholar 

  • Gómez-Baggethun, E., De Groot, R., & Lomas, P. L. (2010). The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecological Economics, 69(6), 1209–1218.

    Article  Google Scholar 

  • Heal, G. (2000). Nature and the marketplace. Washington, DC: Island Press.

    Google Scholar 

  • HMT. (2011). Green Book: Appraisal and evaluation in Central Government. London: HMSO.

    Google Scholar 

  • Howarth, R. B., & Farber, S. (2002). Accounting for the value of ecosystem services. Ecological Economics, 41, 421–429.

    Article  Google Scholar 

  • Jickells, T. D., & Weston, K. (2011). Nitrogen cycle – External cycling: Losses and gains. In E. Wolanskiand & D. S. McLusky (Eds.), Treatise on estuarine and coastal science (Vol. 5, pp. 261–278). Waltham: Academic.

    Chapter  Google Scholar 

  • Jickells, T., Andrews, J., Samways, G., Sanders, R., Malcolm, S., Sivyer, D., Parker, R., Nedwell, D., Trimmer, M., & Ridgway, J. (2000). Nutrient fluxes through the Humber estuary – Past, present and future. Ambio, 29, 130–135.

    Google Scholar 

  • Jones, L. et al. (2011). Chapter 11: Coastal margins. In: The UK National Ecosystem Assessment technical report. UK National Ecosystem Assessment, UNEP-WCMC, Cambridge.

    Google Scholar 

  • Jorda, G., Marba, N., & Duarte, C. M. (2012). Mediterranean seagrass vulnerable to regional climate warming. Nature Climate Change, 2(11), 821–824.

    Article  Google Scholar 

  • Kennedy, H., & Bjork, M. (2009). Seagrass meadows. In D. Laffoley & G. D. Grimsditch (Eds.), The management of natural coastal carbon sinks (pp. 23–28). Gland: IUCN.

    Google Scholar 

  • Langmead, O., McQuatters-Gollop, A., & Mee, L. D. (2007). European lifestyles and marine ecosystems: Exploring challenges for managing Europe’s seas (Vol. 43). Plymouth: University of Plymouth Marine Institute.

    Google Scholar 

  • Luisetti, T., Turner, R. K., Bateman, I. J., Morse-Jones, S., Adams, C., & Fonseca, L. (2011). Coastal and marine ecosystem services valuation for policy and management: Managed realignment case studies in England. Ocean & Coastal Management, 54(3), 212–224.

    Article  Google Scholar 

  • Luisetti, T., Jackson, E. L., & Turner, R. K. (2013). Valuing the European “coastal blue carbon” storage benefit. Marine Pollution Bulletin, 71, 101–106.

    Article  Google Scholar 

  • Luisetti, T., Turner, R. K., Jickells, T., Andrews, J., Elliott, M., Schaafsma, M., Beaumont, N., Malcolm, S., Burdon, D., Adams, C., & Watts, W. (2014). Coastal Zone Ecosystem Services: From science to values and decision making; a case study. Science of the Total Environment, 493, 682–693.

    Article  Google Scholar 

  • Matsui, N., Morimune, K., Meepol, W., & Chukwamdee, J. (2012). Ten year evaluation of carbon stock in mangrove plantation reforested from an abandoned shrimp pond. Forest, 3(4), 431–444.

    Article  Google Scholar 

  • Mazik, K., Musk, W., Dawes, O., Solyanko, K., Brown, S., Mander, L., & Elliott, M. (2010). Managed realignment as compensation for the loss of intertidal mudflat: A short term solution to a long term problem? Estuarine, Coastal and Shelf Science, 90, 11–20.

    Article  Google Scholar 

  • Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552–560.

    Article  Google Scholar 

  • McLusky, D. S., & Elliott, M. (2004). The estuarine ecosystem: Ecology, threats and management (3rd ed.). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Middelburg, J. J., & Levin, L. A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences, 6, 1273–1293.

    Article  Google Scholar 

  • Morgan, P. A., & Short, F. T. (2002). Using functional trajectories to track constructed salt marsh development in the Great Bay estuary, Maine, New Hampshire, U.S.A. Restoration Ecology, 10, 461–473.

    Article  Google Scholar 

  • Mossman, H. L., Brown, M. J. H., Davy, A. J., & Grant, A. (2012). Constraints on salt marsh development following managed coastal realignment: Dispersal limitation or environmental tolerance? Restoration Ecology, 20, 65–75.

    Article  Google Scholar 

  • Murray, B. C., Pendleton, L., Jenkins, W. A., & Sifleet, S. (2011). Green payments for blue carbon: Economic incentives for protecting threatened coastal habitats. Durham: Nicholas Institute for Environmental Policy Solutions, Duke University.

    Google Scholar 

  • Nellemann, C., Corcoran, E., Duarte, C.M., Valdés, L., De Young, C., Fonseca, L., Grimsditch, G. (Eds). (2009). Blue carbon. A rapid response assessment. Norway: United Nations Environment Programme, GRID-Arendal. Birkeland Trykkeri AS.

    Google Scholar 

  • Pearce, D. (2003). The social cost of carbon and its policy implications. Oxford Review of Economic Policy, 19(3), 362.

    Article  Google Scholar 

  • Pendleton, L., Donato, D. C., Murray, B. C., et al. (2012). Estimating global “Blue Carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS One, 7(9), e43542.

    Article  Google Scholar 

  • Rees, J. G., Ridgway, J., Ellis, S., Knox, R. W. O., Newsham, R., & Parkes, A. (2000). Holocene sediment storage in the Humber Estuary. In I. Shennan & J. E. Andrews (Eds.), Holocene land-ocean interaction and environmental change around the North Sea (Geological Society special publication No. 166, pp. 119–143). London: Geological Society.

    Google Scholar 

  • Rickels, W., Görlich, D., & Oberst, G. (2010). Explaining European emission allowance price dynamics: Evidence from phase II (Kiel working papers No. 1650). Kiel: Kiel Institute for World Economy.

    Google Scholar 

  • Seitzinger, S., Harrison, J. A., Bohlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., & Van Drecht, G. (2006). Denitrification across landscapes and waterscapes: A synthesis. Ecological Applications, 16, 2064–2090.

    Article  Google Scholar 

  • Shepherd, D., Burgess, D., Jickells, T., Andrews, J., Cave, R., Turner, R. K., Aldridge, J., Parker, E. R., & Young, E. (2007). Modelling the effects and economics of managed realignment on the cycling and storage of nutrients, carbon and sediments in the Blackwater estuary UK. Estuarine and Coastal Shelf Science, 73, 355–367.

    Article  Google Scholar 

  • Sifleet, S., Pendleton, L., & Murray, B. C. (2011). State of the science on coastal blue carbon: A summary for policy makers. Nicholas Institute for Environmental Policy Solutions. Durham: Duke University.

    Google Scholar 

  • Sousa, A. I., Lillebø, A. I., Pardal, M. A., & Caçador, I. (2010). Productivity and nutrient cycling in salt marshes: Contribution to ecosystem health. Estuarine, Coastal and Shelf Science, 87(4), 640–646.

    Article  Google Scholar 

  • Stern, N. (2007). The economics of climate change: The stern review. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Thomas, S. (2014). Blue carbon: Knowledge gaps, critical issues, and novel approaches. Ecological Economics, 107, 22–38.

    Article  Google Scholar 

  • Tol, R. S. J. (2005). The marginal damage costs of carbon dioxide emissions: An assessment of the uncertainties. Energy Policy, 33, 2064–2074.

    Article  Google Scholar 

  • Turner, R. K., Paavola, J., Cooper, P., Farber, S., Jessamy, V., & Georgiu, S. (2003). Valuing Nature: Lessons learned and future research directions. Ecological Economics, 46, 493–510.

    Article  Google Scholar 

  • Turner, R. K., Burgess, D., Hadley, D., Coombes, E. G., & Jackson, N. (2007). A cost-benefit appraisal of coastal managed realignment policy. Global Environmental Change, 17, 397–407.

    Article  Google Scholar 

  • Turner, R. K., Georgiou, S., & Fisher, B. (2008). Valuing ecosystem services: The case of multifunctional wetlands. London/Washington, DC: Earthscan.

    Google Scholar 

  • UK National Ecosystem Assessment Follow-on. (2014). The UK National Ecosystem Assessment Follow-on: Synthesis of the key findings. Cambridge: UNEP-WCMC, LWEC.

    Google Scholar 

  • Ullman, R., Bilbao-Bastida, V., & Grimsditch, G. (2013). Including blue carbon in climate market mechanisms. Ocean & Coastal Management, 83, 15–18.

    Article  Google Scholar 

  • Vandergeest, P., Flaherty, M., & Miller, P. (2009). A political ecology of shrimp aquaculture in Thailand. Rural Sociology, 64(4), 573–596.

    Article  Google Scholar 

  • Wolters, M., Garbutt, A., Bekker, R. M., & Carey, P. D. (2008). Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. Journal of Applied Ecology, 45, 904–912.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Luisetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luisetti, T. et al. (2015). Why Value ‘Blue Carbon’?. In: Turner, R., Schaafsma, M. (eds) Coastal Zones Ecosystem Services. Studies in Ecological Economics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-17214-9_10

Download citation

Publish with us

Policies and ethics