Skip to main content

Heat Shock Proteins and Cancer: Plant Based Therapy

  • Chapter
Heat Shock Protein-Based Therapies

Part of the book series: Heat Shock Proteins ((HESP,volume 9))

Abstract

Cancer is one of the major causes of mortality in the world. Each year approximately 13 million people suffer from cancer disease, and approximately 60 % of them die because of cancer. Besides most of the patients response harmful side effects of chemo- and radiotherapies. Therefore the establishment of new therapeutic strategies for the treatment of cancers will be required. A number of studies have shown that some HSP are induced in specific tumor cells. For example, increased levels of HSP105, HSP90, HSP70, HSP60, HSP27 have been detected in colon cancer, lung cancer, hepatocellular carcinoma, colorectal cancer, and gliomas, respectively. Elevated HSP levels in tumor cells are suggested to be responsible for increased chemotherapy resistance and poor prognosis. Suppression of HSP expressions in cancer cells is a new strategy for the treatment. It is well known that some plant extracts and their flavonoids significantly decrease HSP expression, and induce apoptosis of cancer cells. In addition, using of the HSP inhibitors in association with classical chemotherapy increases the sensitivity of cancer cells to the cytotoxic drugs. Therefore, some plants and their biologically active natural compounds have been investigated for their possible contribution to cancer therapy. The current chapter reviews the role of HSP in different cancer types and suppressing HSP with some natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

Tanespmycin

17-DMAG:

Retaspmycin

CDDP:

Cisplatin

CRC:

Colorectal carcinoma

Dox:

Doxorubicin

EGCG:

Epigallocatechin-3-gallate

ERK:

Extracellular signal-regulated kinase

GA:

Geldanamycin

Grp:

Glucose-regulated protein

HBV-related HCC:

Hepatit B virus-related hepatocellular carcinoma

HSE:

Heat shock element

HSF:

Heat shock factor

HSP:

Heat shock protein

JNK/SAPK:

Jun-amino-terminal kinase/stress-activated protein kinase

PA:

Peptide aptamer

PDTC:

Pyrrolidine dithiocarbamate

PEITC:

Phenethyl isothiocyanate

PES:

2-phenylethynesulfonamide

Phen:

1,10-phenanthroline

PTMs:

Posttranslational modifications

RCC:

Renal cell carcinoma

RP101:

Brivudine

siRNA:

Small interfering RNA

TF:

Theaflavins

TR:

Thearubigins

ZER:

Zerumbone

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers CD, Parkin D (2010) GLOBOCAN 2008, cancer incidence and mortality worldwide: IARC CancerBase No.10 [Internet]. International Agency for Research on Cancer, Lyon. Available from: http://globocan.iarc.fr

  2. Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    CAS  PubMed  Google Scholar 

  3. Snoeckx LHEH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81(4):1461–1497

    CAS  PubMed  Google Scholar 

  4. Papp E, Nardai G, Söti C, Csermely P (2003) Molecular chaperons, stress proteins and redox homeostasis. Biofactors 17:249–257

    CAS  PubMed  Google Scholar 

  5. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York. ISBN 10:0-8153-4072-9

    Google Scholar 

  6. Sarto C, Binz PA, Mocarelli P (2000) Heat shock proteins in human cancer. Electrophoresis 21(6):1218–1226

    CAS  PubMed  Google Scholar 

  7. Lanneau D, Thonel A, Maurel S, Didelot C, Garrido C (2007) Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1(1):53–60

    PubMed Central  PubMed  Google Scholar 

  8. Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis: heat shock protein 2 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    CAS  PubMed  Google Scholar 

  9. Quigney DJ, Gorman AM, Samali A (2003) Heat shock protects PC12 cells against MPP+ toxicity. Brain Res 993(1–2):133–139

    CAS  PubMed  Google Scholar 

  10. Oesterreich S, Weng CN, Qiu M, Hilsenbeck SG, Osborne CK, Fuqua SA (1993) The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 53(19):4443–4448

    CAS  PubMed  Google Scholar 

  11. Kai M, Nakatsura T, Egami H, Senju S, Nishimura Y, Ogawa M (2003) Heat shock protein 105 is overexpressed in a variety of human tumors. Oncol Rep 10(6):1777–1782

    CAS  PubMed  Google Scholar 

  12. Cappello F, Bellafiore M, Palma A, David S, Marciano V, Bartolotta T, Sciume C, Modica G, Farina F, Zummo G, Bucchieri F (2003) 60Kda chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem 47(2):105–110

    CAS  PubMed  Google Scholar 

  13. Ryu JW, Kim HJ, Lee YS, Myong NH, Hwang CH, Lee GS, Yom HC (2003) The proteomics approach to find biomarkers in gastric cancer. J Korean Med Sci 18(4):505–509

    CAS  PubMed Central  PubMed  Google Scholar 

  14. So A, Hadaschik B, Sowery R, Gleave M (2007) The role of stress proteins in prostate cancer. Curr Genomics 8:252–261

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Ischia J, So AI (2013) The role of heat shock proteins in bladder cancer. Nat Rev Urol 10:386–395

    CAS  PubMed  Google Scholar 

  16. Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A, Chiosis G, Garrido C (2007) Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 14:2839–2847

    CAS  PubMed  Google Scholar 

  17. Takashima M, Kuramitsu Y, Yokoyama Y, Iizuka N, Toda T, Sakaida I, Okita K, Oka M, Nakamura N (2003) Proteomic profiling of heat shock protein 70 family members as biomarkers for hepatitis C virus-related hepatocellular carcinoma. Proteomics 3(12):2487–2493

    CAS  PubMed  Google Scholar 

  18. Nakajima M, Kuwano H, Miyazaki T, Masuda N, Kato H (2002) Significant correlation between expression of heat shock proteins 27, 70 and lymphocyte infiltration in esophageal squamous cell carcinoma. Cancer Lett 178(1):99–106

    CAS  PubMed  Google Scholar 

  19. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5(22):2592–2601

    CAS  PubMed  Google Scholar 

  20. Nylandsted J, Brand K, Jaatela M (2000) Heat shock protein 70 is required for the survival of cancer cells. Ann N Y Acad Sci 926:122–125

    CAS  PubMed  Google Scholar 

  21. Lee SJ, Choi SA, Lee KH, Chung HY, Kim TH, Cho CK, Lee YS (2001) Role of inducible heat shock protein in radiation- induced cell death. Cell Stres Chaperones 6(3):273–281

    CAS  Google Scholar 

  22. Yamamoto K, Okamoto A, Isonishi S, Ochiai K, Ohtake Y (2001) Heat shock protein 27 was up-regulated in cisplatin resistant human ovarian tumor cell line and associated with the cisplatin resistance. Cancer Lett 168(2):173–181

    CAS  PubMed  Google Scholar 

  23. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Andrieu C, Taieb D, Baylot V, Ettinger S, Soubeyran P, De-Thonel A, Nelson C, Garrido C, So A, Fazli L, Bladou F, Gleave M, Iovanna JL, Rocchi P (2010) Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene 29:1883–1896

    CAS  PubMed  Google Scholar 

  25. Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32:517–530

    CAS  PubMed  Google Scholar 

  26. Kim LS, Kim JH (2011) Heat shock protein as molecular targets for breast cancer therapeutics. J Breast Cancer 14(3):167–174

    PubMed Central  PubMed  Google Scholar 

  27. Heinrich JC, Tuukkanen A, Schroeder M, Fahrig T, Fahrig R (2011) RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J Cancer Res Clin Oncol 137:1349–1361

    PubMed  Google Scholar 

  28. Gibert B, Hadchity E, Czekalla A, Aloy M-T, Colas P, Rodriguez-Lafrasse C, Arrigo A-P, Diaz-Latoud C (2011) Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers. Oncogene 30:3672–3681

    CAS  PubMed  Google Scholar 

  29. Garcia-Carbonero R, Carnero A, Paz-Ares L (2013) Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 14:e358–e369

    CAS  PubMed  Google Scholar 

  30. McConnell JR, McAlpine SR (2013) Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorg Med Chem Lett 23:1923–1928

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gorman AM, Heavey B, Creagh E, Cotter TG, Samali A (1999) Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 445:98–102

    CAS  PubMed  Google Scholar 

  32. Kagaya A, Okada A, Jitsuiki H, Tawara Y, Inagaki M, Takebayashi M, Saeki T, Nishida A, Nakata Y, Yamawaki S (2000) Effect of heat stress on serotonin-2A receptor-mediated intracellular calcium mobilization in rat C6 glioma cells. J Neural Transm 107:919–929

    CAS  PubMed  Google Scholar 

  33. Asea A, Ara G, Teicher BA, Stevenson MA, Calderwood SK (2001) Effects of the flavonoid drug quercetin on the response of human prostate tumors to hyperthermia in vivo. Int J Hyperthermia 17:347–356

    CAS  PubMed  Google Scholar 

  34. Jones EL, Zhao MJ, Stevenson MA, Calderwood SK (2004) The 70 kilodalton heat shock protein is an inhibitor of apoptosis in prostate cancer. Int J Hyperthermia 20(8):835–849

    CAS  PubMed  Google Scholar 

  35. Önay-Uçar E, Arda N, Aitken A (2012) An extract from mistletoe, Viscum album L. reduces Hsp27 and 14-3-3 proteins expression and induces apoptosis in C6 rat glioma cells. Genet Mol Res 11(3):2801–2813

    Google Scholar 

  36. Ng KB, Bustamam A, Sukari MA, Abdelwahab SI, Mohan S, Buckle MJC, Kamalidehghan B, Nadzri NM, Anasamy T, Hadi AHA, Rahman HS (2013) Induction of selective cytotoxicity and apoptosis in human T4-lymphoblastoid cell line (CEMss) by boesenbergin a isolated from Boesenbergia rotunda rhizomes involves mitochondrial pathway, activation of caspase 3 and G2/M phase cell cycle arrest. BMC Complement Altern Med 13:41

    PubMed Central  PubMed  Google Scholar 

  37. Diaz-Chavez J, Fonseca-Sanchez MA, Arechaga-Ocampo E, Flores-Perez A, Palacios-Rodriguez Y, Dominguez-Gomez G, Marchat LA, Fuentes-Mera L, Mendoza-Hernandez G, Gariglio P, Lopez-Camarillo C (2013) Proteomic profiling reveals that resveratrol inhibits HSP27 expression and sensitizes breast cancer cells to doxorubicin therapy. PLoS One 8(5):e64378

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Nakatsura T, Senju S, Yamada K, Jotsuka T, Ogawa M, Nishimura Y (2001) Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun 281:936–944

    CAS  PubMed  Google Scholar 

  39. Yano M, Naito Z, Yokoyama M, Shiraki Y, Ishiwata T, Inokuchi M, Asano G (1999) Expression of hsp90 and cyclin D1 in human breast cancer. Cancer Lett 137:45–51

    CAS  PubMed  Google Scholar 

  40. Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 67:2932–2937

    CAS  PubMed  Google Scholar 

  41. Lim SO, Park SG, Yoo JH, Park YM, Kim HJ, Jang KT, Cho JW, Yoo BC, Jung GH, Park CK (2005) Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol 11(14):2072–2079

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Zackova M, Mouckova D, Lopotova T, Ondrackova Z, Klamova H, Moravcova J (2013) Hsp90 – a potential prognostic marker in CML. Blood Cells Mol Dis 50:184–189

    CAS  PubMed  Google Scholar 

  43. Ciocca DR, Clark GM, Tandon AK, Fuqua SAW, Welch WJ, McGuire WL (1993) Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst 85(7):570–574

    CAS  PubMed  Google Scholar 

  44. Garg M, Kanojia D, Saini S, Suri S, Gupta A, Surolia A, Suri A (2010) Germ cell-specific heat shock protein 70-2 is expressed in cervical carcinoma and is involved in the growth, migration, and invasion of cervical cells. Cancer 116(16):3785–3796

    CAS  PubMed  Google Scholar 

  45. Chuma M, Sakamoto M, Yamazaki K, Ohta T, Ohki M, Asaka M, Hirohashi S (2003) Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology 37(1):198–207

    CAS  PubMed  Google Scholar 

  46. Lagana SM, Moreira RK, Remotti HE, Bao F (2013) Glutamine synthetase, heat shock protein-70, and glypican-3 in intrahepatic cholangiocarcinoma and tumors metastatic to liver. Appl Immunohistochem Mol Morphol 21:254–257

    CAS  PubMed  Google Scholar 

  47. Abe M, Manola JB, Oh WK, Parslow DL, George DJ, Austin CL, Kantoff PW (2004) Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer. Clin Prostate Cancer 3(1):49–53

    CAS  PubMed  Google Scholar 

  48. Rubporn A, Srisomsap C, Subhasitanont P, Chokchaichamnankit D, Chiablaem K, Svasti J, Sangvanich P (2009) Comparative proteomic analysis of lung cancer cell line and lung fibroblast cell line. Cancer Genomics Proteomics 6:229–238

    CAS  PubMed  Google Scholar 

  49. Cornford PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden A, Fordham M, Neoptolemos JP, Ke Y, Foster CS (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 60(24):7099–7105

    CAS  PubMed  Google Scholar 

  50. Cappello F, Rappa F, David S, Anzalone R, Zummo G (2003) Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res 23(2B):1325–1331

    CAS  PubMed  Google Scholar 

  51. Conroy SE, Sasieni PD, Amin V, Wang DY, Smith P, Fentiman IS, Latchman DS (1998) Antibodies to heat-shock protein 27 are associated with improved survival in patients with breast cancer. Br J Cancer 77(11):1875–1879

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Zhu Z, Xu X, Yu Y, Graham M, Prince ME, Carey TE, Sun D (2010) Silencing heat shock protein 27 decreases metastatic behavior of human head and neck squamous cell cancer cells in vitro. Mol Pharm 7(4):1283–1290

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Yu Z, Zhi J, Peng X, Zhong X, Xu A (2010) Clinical significance of HSP27 expression in colorectal cancer. Mol Med Rep 3(6):953–958

    CAS  PubMed  Google Scholar 

  54. Pei HP, Ge H, Jiang R, Zhu H (2010) Expression and clinical significance of 14-3-3 sigma and heat shock protein 27 in colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi 13(3):213–215

    PubMed  Google Scholar 

  55. Geisler JP, Geisler HE, Tammela J, Miller GA, Wiemann MC, Zhou Z (1999) A study of heat shock protein 27 in endometrial carcinoma. Gynecol Oncol 72(3):347–350

    CAS  PubMed  Google Scholar 

  56. Kapranos N, Kominea A, Konstantinopoulos PA, Savva S, Artelaris S, Vandoros G, Sotiropoulou-Bonikou G, Papavassiliou AG (2002) Expression of the 27-kDa heat shock protein (HSP27) in gastric carcinomas and adjacent normal, metaplastic, and dysplastic gastric mucosa, and its prognostic significance. J Cancer Res Clin Oncol 128(8):426–432

    CAS  PubMed  Google Scholar 

  57. Chen J, Kahne T, Rocken C, Gotze T, Yu J, Sung JJ, Chen M, Hu P, Malfertheiner P, Ebert MP (2004) Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of metastasis-related proteins. J Proteome Res 3:1009–1016

    CAS  PubMed  Google Scholar 

  58. Hitotsumatsu T, Iwaki T, Fukui M, Tateishi J (1996) Distinctive immunohistochemical profiles of small heat shock proteins (heat shock protein 27 and alpha beta-crystallin) in human brain tumors. Cancer Res 77:352–361

    CAS  Google Scholar 

  59. Hermisson M, Strik H, Rieger J, Dichgans J, Meyermann R, Weller M (2000) Expression and functional activity of heat shock proteins in human glioblastoma multiforme. Neurology 54:1357–1364

    CAS  PubMed  Google Scholar 

  60. Zhang R, Tremblay TL, McDermid A, Thibault P, Stanimirovic D (2003) Identification of differentially expressed proteins in human glioblastoma cell lines and tumors. Glia 42:194–208

    PubMed  Google Scholar 

  61. Graner MW, Bigner DD (2005) Chaperone proteins and brain tumors: potential targets and possible therapeutics. Neuro Oncol 7:260–277

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Cao WD, Zhang X, Zhang JN, Yang ZJ, Zhen HN, Cheng G, Li B, Gao DK (2006) Immunocytochemical detection of 14-3-3 in primary nervous system tumors. J Neurooncol 77:125–130

    CAS  PubMed  Google Scholar 

  63. Cao L, Cao WD, Zhang W, Lin H, Yang X, Zhen H, Cheng J, Dong W, Huo J, Zhang X (2008) Identification of 14-3-3 protein isoforms in human astrocytoma by immunohistochemistry. Neurosci Lett 432:94–99

    CAS  PubMed  Google Scholar 

  64. Liang S, Shen G, Liu Q, Xu Y, Zhou L, Xiao S, Xu Z, Gong F, You C, Wei Y (2009) Isoform-specific expression and characterization of 14-3-3 proteins in human glioma tissues discovered by stable isotope labeling with amino acids in cell culture-based proteomic analysis. Proteomics Clin Appl 3:743–753

    CAS  PubMed  Google Scholar 

  65. Luk JM, Lam CT, Siu AFM, Lam BY, Ng IOL, Yu MY, Che CM, Fan ST (2006) Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 6(3):1049–1057

    CAS  PubMed  Google Scholar 

  66. Song HY, Liu YK, Feng JT, Cui JF, Dai Z, Zhang LJ, Feng JX, Shen HL, Tang ZY (2006) Proteomic analysis on metastasis-associated proteins of human hepatocellular carcinoma tissues. J Cancer Res Clin Oncol 132:92–98

    CAS  PubMed  Google Scholar 

  67. Chen XL, Zhou L, Yang J, Shen FK, Zhao SP, Wang YL (2010) Hepatocellular carcinoma-associated protein markers investigated by MALDI-TOF MS. Mol Med Rep 3(4):589–596

    CAS  PubMed  Google Scholar 

  68. Romani AA, Crafa P, Desenzani S, Graiani G, Lagrasta C, Sianesi M, Soliani P, Borghetti AF (2007) The expression of HSP27 is associated with poor clinical outcome in intrahepatic cholangiocarcinoma. BMC Cancer 7:232

    PubMed Central  PubMed  Google Scholar 

  69. Yang YL, Ji C, Bi ZG, Lu CC, Wang R, Gu B, Cheng L (2013) Deguelin induces both apoptosis and autophagy in cultured head and neck squamous cell carcinoma cells. PLoS One 8(1):e54736

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Arts HJ, Hollema H, Lemstra W, Willemse PH, De Vries EG, Kampinga HH, Van der Zee AG (1999) Heat-shock-protein-27 (hsp27) expression in ovarian carcinoma: relation in response to chemotherapy and prognosis. Int J Cancer 84(3):234–238

    CAS  PubMed  Google Scholar 

  71. Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, Kroemer G (2003) HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2:579–584

    CAS  PubMed  Google Scholar 

  72. Zhang D, Tai LK, Wong LL, Sethi SK, Koay ESC (2005) Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol Cell Proteomics 4:1686–1696

    CAS  PubMed  Google Scholar 

  73. Parcellier A, Brunet M, Schmitt E, Col E, Didelot C, Hammann A, Nakayama K, Nakayama KI, Khochbin S, Solary E, Garrido C (2006) HSP27 favors ubiquitination and proteasomal degradation of p27Kip1 and helps S-phase re-entry in stressed cells. FASEB J 20:1179–1181

    CAS  PubMed  Google Scholar 

  74. Erkizan O, Kirkali G, Yorukoglu K, Kirkali Z (2004) Significance of heat shock protein-27 expression in patients with renal cell carcinoma. Urology 64(3):474–478

    CAS  PubMed  Google Scholar 

  75. Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SA (1993) Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 85(19):1558–1570

    CAS  PubMed  Google Scholar 

  76. Bruey JM, Paul C, Fromentin A, Hilpert S, Arrıgo AP, Solary E, Garrido C (2000) Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene 19(42):4855–4863

    CAS  PubMed  Google Scholar 

  77. Garrido C, Mehlen P, Fromentin A, Hammann A, Assem M, Arrigo AP, Chauffert B (1996) Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin-protecting effect of Hsp27. Eur J Biochem 237:653–659

    CAS  PubMed  Google Scholar 

  78. Hansen RK, Parra I, Lemieux P, Oesterreich S, Hilsenbeck SG, Fuqua SA (1999) Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 56:187–196

    CAS  PubMed  Google Scholar 

  79. Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L (2004) Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 64:6595–6602

    CAS  PubMed  Google Scholar 

  80. Verrills NM, Liem NL, Liaw TY, Hood BD, Lock RB, Kavallaris M (2006) Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia–an in vivo study. Proteomics 6:1681–1694

    CAS  PubMed  Google Scholar 

  81. Kang SH, Kang KW, Kim KH, Kwon B, Kim SK, Lee HY, Kong SY, Lee ES, Jang SG, Yoo BY (2008) Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability. BMC Cancer 8:286

    PubMed Central  PubMed  Google Scholar 

  82. Guttmann DM, Koumenis C (2011) The heat shock proteins as targets for radiosensitization and chemosensitization in cancer. Cancer Biol Ther 12(12):1023–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Park SH, Lee SJ, Chung HY, Kim TH, Cho CK, Yoo SY, Lee YS (2000) Inducible heat shock protein 70 involved in the radioadaptive response. Radiat Res 153(3):318–326

    CAS  PubMed  Google Scholar 

  84. Jaattela M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248(1):30–43

    CAS  PubMed  Google Scholar 

  85. Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3:502–516

    CAS  PubMed  Google Scholar 

  86. Thor A, Benz C, Moore D, Goldman E, Edgerton S, Landry J, Schwartz L, Mayall B, Hickey E, Weber LA (1991) Stress response protein (srp-27) determination in primary human breast carcinomas: clinical, histologic, and prognostic correlations. J Natl Cancer Inst 83(3):154–155

    Google Scholar 

  87. Calderwood S (2007) Heat shock proteins in extracellular signaling. Methods 43(3):167

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Calderwood SK, Ciocca DR (2008) Heat shock proteins: stress proteins with Janus-like properties in cancer. Int J Hyperthermia 24(1):31–39

    CAS  PubMed  Google Scholar 

  89. Gabai VL, Budagova KR, Sherman MY (2005) Increased expression of the major heat shock protein Hsp72 in human prostate carcinoma cells is dispensable for their viability but confers resistance to a variety of anticancer agents. Oncogene 24:3328–3338

    CAS  PubMed  Google Scholar 

  90. Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR (1998) Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 79(5):468–475

    CAS  PubMed  Google Scholar 

  91. Bauer K, Nitsche U, Slotta-Huspenina J, Drecoll E, von Weyhern CH, Rosenberg R, Höfler H, Langer R (2012) High HSP27 and HSP70 expression levels are independent adverse prognostic factors in primary resected colon cancer. Cell Oncol 35:197–205

    CAS  Google Scholar 

  92. Khalid H, Tsutsumi K, Yamashita H, Kishikawa M, Yasunaga A, Shibata S (1995) Expression of the small heat shock protein (hsp) 27 in human astrocytomas correlates with histologic grades and tumor growth fractions. Cell Mol Neurobiol 15(2):257–268

    CAS  PubMed  Google Scholar 

  93. Akbar MT, Lundberg AMC, Liu K, Vidyadaran S, Wells KE, Dolatshad H, Wynn S, Wells DJ, Latchman DS, Belleroche J (2003) The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J Biol Chem 278(22):19956–19965

    CAS  PubMed  Google Scholar 

  94. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13(14):2061–2070

    CAS  PubMed  Google Scholar 

  95. Kabakov AE, Gabai VL (1995) Heat shock-induced accumulation of 70-kDa stress protein (HSP70) can protect ATP-depleted tumor cells from necrosis. Exp Cell Res 217:15–21

    CAS  PubMed  Google Scholar 

  96. Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human alphaB-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. Immunology 154:363–374

    CAS  Google Scholar 

  97. Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170

    CAS  PubMed  Google Scholar 

  98. Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92:1564–1572

    CAS  PubMed  Google Scholar 

  99. Arrigo AP (2007) Anti-apoptotic, tumorigenic and metastatic potential of Hsp27 (HspB1) and B-crystallin (HspB5): emerging targets for the development of new anti-cancer therapeutic strategies. In: Sherman MY, Ciocca DR, Calderwood SK (eds) Heat shock proteins in cancer. Springer, Dordrecht, pp 73–92

    Google Scholar 

  100. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome C. Nat Cell Biol 2:645–652

    CAS  PubMed  Google Scholar 

  101. Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8(1):61–70

    CAS  PubMed  Google Scholar 

  102. Samali A, Robertson JD, Peterson E, Manero F, Zeijl LV, Paul C, Cotgreave IA, Arrigo AP, Orrenius S (2001) Hsp27 protects mitochondria of thermotoleratn cells against apoptotic stimuli. Cell Stress Chaperones 6(1):49–58

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87:19–48

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Kiang JG, Tsokos GC (1998) Heat Shock Protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80(2):183–201

    CAS  PubMed  Google Scholar 

  105. Wu C (1995) Heat shock transcription factors: structure and regulation. Ann Rev Cell Dev Biol 11:441–469

    CAS  Google Scholar 

  106. Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    CAS  PubMed  Google Scholar 

  107. Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63

    CAS  PubMed  Google Scholar 

  108. Powers MV, Workman P (2007) Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 581:3758–3769

    CAS  PubMed  Google Scholar 

  109. Baler R, Dahl G, Voellmy R (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 13:2486–2496

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Kim J, Nueda A, Meng YH, Dynan WS, Mivechi NF (1997) Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members. J Cell Biochem 67:43–54

    CAS  PubMed  Google Scholar 

  111. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    CAS  PubMed  Google Scholar 

  112. Mosser DD, Duchaine J, Massie B (1993) The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol 13:5427–5438

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Landry J, Chrétien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:7–15

    CAS  PubMed  Google Scholar 

  114. Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J (1993) Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. J Biol Chem 268:3420–3429

    CAS  PubMed  Google Scholar 

  115. Dalle-Donne I, Rossi R, Milzani A, Simplicio P, Colombo R (2001) The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med 31(12):1624–1632

    CAS  PubMed  Google Scholar 

  116. Wong HR, Mannix R, Rusnak JM, Boota A, Zar H, Watkins SC, Lazo JS, Pitt BR (1996) The heat-shock response attenuates lipopolysaccharide-mediated apoptosis in cultured sheep pulmonary artery endothelial cells. Am J Respir Cell Mol Biol 15:745–751

    CAS  PubMed  Google Scholar 

  117. Mosser DD, Caron AW, Bourget L, Denise-Larose C, Massie B (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Workman P (2004) Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206:149–157

    CAS  PubMed  Google Scholar 

  119. Gullo VP, McAlpine J, Lam KS, Baker D, Petersen F (2006) Drug discovery from natural products. J Ind Microbiol Biotechnol 33:523–531

    CAS  PubMed  Google Scholar 

  120. Reikvam H, Nepstad I, Sulen A, Gjertsen BT, Hatfield KJ, Bruserud O (2013) Increased antileukemic effects in human acute myeloid leukemia by combining HSP70 and HSP90 inhibitors. Expert Opin Investig Drugs 22(5):551–563

    CAS  PubMed  Google Scholar 

  121. Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev Cancer 5:468–479

    CAS  PubMed  Google Scholar 

  122. Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo AP (2002) Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22:816–834

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Mikuria K, Fujimoto M, Maehara SI, Maehara Y, Okita K, Nakamura K, Sakaida I (2007) Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int J Oncol 31:1345–1350

    CAS  PubMed  Google Scholar 

  124. Ischia J, Saad F, Gleave M (2013) The promise of heat shock protein inhibitors in the treatment of castration resistant prostate cancer. Curr Opin Urol 23:194–200

    PubMed  Google Scholar 

  125. Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L (2006) Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 98:1082–1089

    CAS  PubMed  Google Scholar 

  126. Kamada M, So A, Muramaki M, Rocchi P, Beraldi E, Gleave M (2007) Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther 6:299–308

    CAS  PubMed  Google Scholar 

  127. Granato M, Lacconi V, Peddis M, Lotti LV, Renzo LD, Gonnella R, Santarelli R, Trivedi P, Frati L, D’Orazi G, Faggioni A, Cirone M (2013) HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma. Cell Death Dis 4:e730

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Cragg GM, Newman DJ (2006) Plants as a source of anti-cancer agents. Ethnopharmacology 1. Encyclopedia of Life Support Systems (EOLSS). Eolss Publishers, Oxford

    Google Scholar 

  129. Soler MC, Molina JL, Díaz HA, Pinto VC, Barrios YL, He K, Roller M, Weinstein-Oppenheimer CR (2011) Effect of the standardized Cimicifuga foetida extract on Hsp 27 expression in the MCF-7 cell line. Biol Res 44(3):243–249

    CAS  PubMed  Google Scholar 

  130. Tran P, Kim SA, Choi HS, Yoon JH, Ahn SG (2010) Epigallo catechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer 10:276

    PubMed Central  PubMed  Google Scholar 

  131. Chen NG, Lu CC, Lin YH, Shen WC, Lai CH, Ho YJ, Chun JG, Lin TH, Lin YC, Yang JS (2011) Proteomic approaches to study epigallocatechin gallate-provoked apoptosis of TSGH-8301 human urinary bladder carcinoma cells: roles of AKT and heat shock protein 27-modulated intrinsic apoptotic pathways. Oncol Rep 26:939–947

    CAS  PubMed  Google Scholar 

  132. Rusak G, Gutzeit HO, Ludwig-Müller J (2002) Effects of structurally related flavonoids on hsp gene expression in human promyeloid leukaemia cells. Food Technol Biotechnol 40(4):267–273

    CAS  Google Scholar 

  133. Catalano A, Simone RE, Cittadini A, Reynaud E, Caris-Veyrat C, Palozza P (2013) Comparative antioxidant effects of lycopene, apo-10′-lycopenoic acid and apo-14′-lycopenoic acid in human macrophages exposed to H2O2 and cigarette smoke extract. Food Chem Toxicol 51:71–79

    CAS  PubMed  Google Scholar 

  134. Sarkars R, Mukherjee S, Roy M (2013) Targeting heat shock proteins by phenethyl isothiocyanate results in cell-cycle arrest and apoptosis of human breast cancer cells. Nutr Cancer 65(3):480–493

    CAS  PubMed  Google Scholar 

  135. Staedler D, Idrizi E, Kenzaoui BH, Juillerat-Jeanneret L (2011) Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol 68:1161–1172

    CAS  PubMed  Google Scholar 

  136. Jakubowicz-Gil J, Rzymowska J, Gawron A (2002) Quercetin, apoptosis, heat shock. Biochem Pharmacol 64:1591–1595

    CAS  PubMed  Google Scholar 

  137. Jakubowicz-Gil J, Paduch R, Piersiak T, Glowniak K, Gawron A, Kandefer-Szerszen M (2005) The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells. Biochem Pharmacol 69:1343–1350

    CAS  PubMed  Google Scholar 

  138. Zanini C, Giribaldi G, Mandili G, Carta F, Crescenzio N, Bisaro B, Doria A, Foglia L, di Montezemolo LC, Timeus F, Turrini F (2007) Inhibition of heat shock proteins (HSP) expression by quercetin and differential doxorubicin sensitization in neuroblastoma and Ewing’s sarcoma cell lines. J Neurochem 103:1344–1354

    CAS  PubMed  Google Scholar 

  139. Tanaka Y, Fujiwara K, Tanaka H, Maehata K, Kohno I (2004) Paclitaxel inhibits expression of heat shock protein 27 in ovarian and uterine cancer cells. Int J Gynecol Cancer 14:616–620

    CAS  PubMed  Google Scholar 

  140. Halder B, Gupta SD, Gomes A (2012) Black tea polyphenols induce human leukemic cell cycle arrest by inhibiting Akt signaling possible involvement of Hsp90, Wnt ⁄b-catenin signaling and FOXO1. FEBS J 279:2876–2891

    CAS  PubMed  Google Scholar 

  141. Westerheide SD, Kawahara TLA, Orton K, Morimoto RI (2006) Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281(14):9616–9622

    CAS  PubMed  Google Scholar 

  142. Yu Y, Hamza A, Zhang T, Gu M, Zou P, Newman B, Li Y, Gunatilaka AAL, Whitesell L, Zhan CG, Sun D (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79(4):542–551

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Choi SH, Lee YJ, Seo WD, Lee HJ, Nam JW, Lee YJ, Kim J, Seo EK, Lee YS (2011) Altered cross-linking of HSP27 by zerumbone as a novel strategy for overcoming HSP27-mediated radioresistance. Int J Radiat Oncol Biol Phys 79(4):1196–1205

    CAS  PubMed  Google Scholar 

  144. Morino M, Tsuzuki T, Ishikawa Y, Shirakami T, Yoshimura M, Kiyosuke Y, Matsunaga K, Yoshikumi C, Saijo N (1997) Specific regulation of HSP in human tumor cell lines by flavonoids. In Vivo 11(3):265–270

    CAS  PubMed  Google Scholar 

  145. Inoue H, Akiyama S, Maeda-Yamamoto M, Nesumi A, Tanaka T, Murakami A (2011) High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodium-induced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions. Cell Stress Chaperones 16(6):653–662

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Ernst E, Schmidt K, Steuer-Vogt MK (2003) Mistletoe for cancer? A systematic review of randomised clinical trials. Int J Cancer 107:262–267

    CAS  PubMed  Google Scholar 

  147. Grossarth-Maticek R, Ziegler R (2007) Prospective controlled cohort studies on long-term therapy of ovairian cancer patients with mistletoe (Viscum album L.) extracts iscador. Arzneimittelforschung 57(10):665–678

    CAS  PubMed  Google Scholar 

  148. Önay-Uçar E, Karagöz A, Arda N (2006) Antioxidant activity of Viscum album L. ssp. album. Fitoterapia 77:556–560

    PubMed  Google Scholar 

  149. Yano M, Nakamuta N, Wu X, Okumura Y, Kido H (2006) A novel function of 14-3-3 protein: 14-3-3 is a heat-shock–related molecular chaperone that dissolves thermal-aggregated protein. Mol Biol Cell 17:4769–4779

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Peng J, Jones GL, Watson K (2000) Stress proteins as biomarkers of oxidative stress: effects of antioxidant supplements. Free Radic Biol Med 28(11):1598–1606

    CAS  PubMed  Google Scholar 

  151. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Aoike A, Kawai K, Nagata K (1990) Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct 15:393–401

    CAS  PubMed  Google Scholar 

  152. Hosokawa N, Hirayoshi K, Kudo H, Takechi H, Aoike A, Kawai K, Nagata K (1992) Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol 12:3490–3498

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Nagai N, Nakai A, Nagata K (1995) Quercetin suppresses heat shock response by down-regulation of HSF1. Biochem Biophys Res Commun 208(3):1099–1105

    CAS  PubMed  Google Scholar 

  154. Hansen RK, Oesterreich S, Lemieux P, Sarge KD, Fuqua SAW (1997) Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Biochem Biophys Res Commun 239:851–856

    CAS  PubMed  Google Scholar 

  155. Debes A, Oerding M, Willers R, Gobel U, Wessalowski R (2003) Sensitization of human Ewing’s tumor cells to chemotherapyand heat treatment by the bioflavonoid quercetin. Anticancer Res 23:3359–3366

    CAS  PubMed  Google Scholar 

  156. Dechsupa S, Kothan S, Vergote J, Leger G, Martineau A, Beranger S, Kosanlavit R, Moretti JL, Mankhetkorn S (2007) Quercetin, Siamois 1 and Siamois 2 induce apoptosis inhuman breast cancer MDA-MB-435 cells xenograft in vivo. Cancer Biol Ther 6(1):56–61

    CAS  PubMed  Google Scholar 

  157. Cipak L, Novotny L, Cipakova I, Rauko P (2003) Differential modulation of cisplatin and doxorubicin efficacies in leukemia cells by flavonoids. Nutr Res 23:1045–1057

    CAS  Google Scholar 

  158. Hsu HS, Lin JH, Huang WC, Hsu TW, Su K, Chiou SH, Tsai YT, Hung SC (2011) Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer 117:1516–1528

    CAS  PubMed  Google Scholar 

  159. Tang D, Khaleque A, Jones EL, Theriault JR, Li C, Wong WH, Stevenson MA, Calderwood SK (2005) Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 10(1):46–58

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks to Prof. Dr. Nazlı Arda (Istanbul University) for helpful advice, and Dr. Murat Pekmez (Istanbul University) and Dr. Farinaz Jafari Ghods (Istanbul University) for suggestions. This study was supported by the Research Fund of Istanbul University (Project no. T-746/13092005 and 4120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Önay-Uçar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Önay-Uçar, E. (2015). Heat Shock Proteins and Cancer: Plant Based Therapy. In: Asea, A., Almasoud, N., Krishnan, S., Kaur, P. (eds) Heat Shock Protein-Based Therapies. Heat Shock Proteins, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-17211-8_3

Download citation

Publish with us

Policies and ethics