Skip to main content

Potential Applications of Nanoparticles for Hyperthermia

  • Chapter
Heat Shock Protein-Based Therapies

Part of the book series: Heat Shock Proteins ((HESP,volume 9))

  • 992 Accesses

Abstract

There is converging evidence that clinical mild temperature hyperthermia sensitizes tumors to conventional therapies as chemotherapy and radiation therapy. Coupled with an increasing understanding of the biological basis of this synergy there has been a parallel increase in the ability to achieve, maintain, measure and monitor temperature and its physiological and physical consequences. A new entrant in the arena of hyperthermia generation is nanotechnology which capitalizes on locally injected or systemically administered nanoparticles that home to tumors and are activated by extrinsic energy sources to generate heat. This chapter highlights the unique opportunities and challenges with implementing hyperthermia mediated by a variety of engineered nanoparticles for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMF:

Alternating magnetic field

AuNRs:

Gold nanorods

AuNSs:

Gold-silica nanoshells

CTAB:

Cetylmethylamunium bromide

EGFR:

Epidermal growth factor receptor

EPR:

Enhanced permeability and retention

HAuNS:

Hollow gold nanoshells

MSH:

Melanocyte-stimulating hormone

MWCNTs:

Multi walled carbon nanotubes

NIR:

Near-infrared

PEG:

Polyethylene glycol

SAR:

Specific absorption rate

SPIONs:

Superparamagnetic iron oxide nanoparticles

SWCNTs:

Single walled carbon nanotubes

References

  1. Coley WB (1891) II. Contribution to the knowledge of sarcoma. Ann Surg 14:199–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Doss JD, McCabe CW (1976) A technique for localized heating in tissue: an adjunct to tumor therapy. Med Instrum 10:16–21

    CAS  PubMed  Google Scholar 

  3. Friedenthal E, Mendecki J, Botstein C, Sterzer F, Nowogrodzki M, Paglione R (1981) Some practical considerations for the use of localized hyperthermia in the treatment of cancer. J Microw Power 16:199–204

    CAS  PubMed  Google Scholar 

  4. Irish CE, Brown J, Galen WP, Gallucci JJ, Hyman MD, Horowitz IJ, Snedecor PA, Baker HW (1986) Thermoradiotherapy for persistent cancer in previously irradiated fields. Cancer 57:2275–2279

    Article  CAS  PubMed  Google Scholar 

  5. Kim JH, Hahn EW, Ahmed SA (1982) Combination hyperthermia and radiation therapy for malignant melanoma. Cancer 50:478–482

    Article  CAS  PubMed  Google Scholar 

  6. Lele PP (1980) Induction of deep, local hyperthermia by ultrasound and electromagnetic fields: problems and choices. Radiat Environ Biophys 17:205–217

    Article  CAS  PubMed  Google Scholar 

  7. Luk KH, Francis ME, Perez CA, Johnson RJ (1984) Combined radiation and hyperthermia: comparison of two treatment schedules based on data from a registry established by the Radiation Therapy Oncology Group (RTOG). Int J Radiat Oncol Biol Phys 10:801–809

    Article  CAS  PubMed  Google Scholar 

  8. Magin RL, Johnson RK (1979) Effects of local tumor hyperthermia on the growth of solid mouse tumors. Cancer Res 39:4534–4539

    CAS  PubMed  Google Scholar 

  9. Seegenschmiedt MH, Sauer R, Miyamoto C, Chalal JA, Brady LW (1993) Clinical experience with interstitial thermoradiotherapy for localized implantable pelvic tumors. Am J Clin Oncol 16:210–222

    Article  CAS  PubMed  Google Scholar 

  10. Stewart JR, Gibbs FA Jr (1984) Hyperthermia in the treatment of cancer. Perspectives on its promise and its problems. Cancer 54:2823–2830

    Article  CAS  PubMed  Google Scholar 

  11. Thrall DE (1980) Clinical requirements for localized hyperthermia in the patient. Radiat Environ Biophys 17:229–232

    Article  CAS  PubMed  Google Scholar 

  12. Bass H, Moore JL, Coakley WT (1978) Lethality in mammalian cells due to hyperthermia under oxic and hypoxic conditions. Int J Radiat Biol Relat Stud Phys Chem Med 33:57–67

    Article  CAS  PubMed  Google Scholar 

  13. Fuller KJ, Issels RD, Slosman DO, Guillet JG, Soussi T, Polla BS (1994) Cancer and the heat shock response. Eur J Cancer 30A:1884–1891

    Article  CAS  PubMed  Google Scholar 

  14. Harmon BV, Takano YS, Winterford CM, Gobe GC (1991) The role of apoptosis in the response of cells and tumours to mild hyperthermia. Int J Radiat Biol 59:489–501

    Article  CAS  PubMed  Google Scholar 

  15. Franckena M, van der Zee J (2010) Use of combined radiation and hyperthermia for gynecological cancer. Curr Opin Obstet Gynecol 22:9–14

    Article  PubMed  Google Scholar 

  16. Huilgol NG, Gupta S, Dixit R (2010) Chemoradiation with hyperthermia in the treatment of head and neck cancer. Int J Hyperthermia 26:21–25

    Article  CAS  PubMed  Google Scholar 

  17. Huilgol NG, Gupta S, Sridhar CR (2010) Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: a report of randomized trial. J Cancer Res Ther 6:492–496

    Article  PubMed  Google Scholar 

  18. Hurwitz MD, Hansen JL, Prokopios-Davos S, Manola J, Wang Q, Bornstein BA, Hynynen K, Kaplan ID (2011) Hyperthermia combined with radiation for the treatment of locally advanced prostate cancer: long-term results from Dana-Farber Cancer Institute study 94–153. Cancer 117:510–516

    Article  PubMed Central  PubMed  Google Scholar 

  19. Moros EG, Penagaricano J, Novak P, Straube WL, Myerson RJ (2010) Present and future technology for simultaneous superficial thermoradiotherapy of breast cancer. Int J Hyperthermia 26:699–709

    Article  PubMed Central  PubMed  Google Scholar 

  20. Van den Berg CA, Van de Kamer JB, De Leeuw AA, Jeukens CR, Raaymakers BW, van Vulpen M, Lagendijk JJ (2006) Towards patient specific thermal modelling of the prostate. Phys Med Biol 51:809–825

    Article  PubMed  Google Scholar 

  21. Vasanthan A, Mitsumori M, Park JH, Zhi-Fan Z, Yu-Bin Z, Oliynychenko P, Tatsuzaki H, Tanaka Y, Hiraoka M (2005) Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multi-institutional prospective randomized trial of the international atomic energy agency. Int J Radiat Oncol Biol Phys 61:145–153

    Article  PubMed  Google Scholar 

  22. Zagar TM, Oleson JR, Vujaskovic Z, Dewhirst MW, Craciunescu OI, Blackwell KL, Prosnitz LR, Jones EL (2010) Hyperthermia combined with radiation therapy for superficial breast cancer and chest wall recurrence: a review of the randomised data. Int J Hyperthermia 26:612–617

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pritchard MT, Ostberg JR, Evans SS, Burd R, Kraybill W, Bull JM, Repasky EA (2004) Protocols for simulating the thermal component of fever: preclinical and clinical experience. Methods 32:54–62

    Article  CAS  PubMed  Google Scholar 

  24. Chang E, Alexander HR, Libutti SK, Hurst R, Zhai S, Figg WD, Bartlett DL (2001) Laparoscopic continuous hyperthermic peritoneal perfusion. J Am Coll Surg 193:225–229

    Article  CAS  PubMed  Google Scholar 

  25. Feldman AL, Libutti SK, Pingpank JF, Bartlett DL, Beresnev TH, Mavroukakis SM, Steinberg SM, Liewehr DJ, Kleiner DE, Alexander HR (2003) Analysis of factors associated with outcome in patients with malignant peritoneal mesothelioma undergoing surgical debulking and intraperitoneal chemotherapy. J Clin Oncol 21:4560–4567

    Article  CAS  PubMed  Google Scholar 

  26. Vogl TJ, Farshid P, Naguib NN, Darvishi A, Bazrafshan B, Mbalisike E, Burkhard T, Zangos S (2014) Thermal ablation of liver metastases from colorectal cancer: radiofrequency, microwave and laser ablation therapies. Radiol Med 119:451–461

    Article  PubMed  Google Scholar 

  27. Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L (2014) High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci 17:136–153

    PubMed  Google Scholar 

  28. Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J, Hatcher HC, D’Agostino R Jr, Kock ND, Ajayan PM, Carroll DL, Akman S, Torti FM, Torti SV (2009) Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A 106:12897–12902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ayala-Orozco C, Urban C, Knight MW, Urban AS, Neumann O, Bishnoi SW, Mukherjee S, Goodman AM, Charron H, Mitchell T, Shea M, Roy R, Nanda S, Schiff R, Halas NJ, Joshi A (2014) Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8:6372–6381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Goodman AM, Cao Y, Urban C, Neumann O, Ayala-Orozco C, Knight MW, Joshi A, Nordlander P, Halas NJ (2014) The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells. ACS Nano 8:3222–3231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cherukuri P, Glazer ES, Curleya SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62:339–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2:1001–1014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Huang XH, Peng XH, Wang YQ, Wang YX, Shin DM, El-Sayed MA, Nie SM (2010) A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 4: 5887–5896

    Google Scholar 

  35. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7:169–183

    Article  CAS  PubMed  Google Scholar 

  36. Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7:1730–1739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Article  PubMed  Google Scholar 

  38. Atkinson RL, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A, Hilsenbeck SG, Woodward WA, Krishnan S, Chang JC, Rosen JM (2010) Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med 2:55–79

    Article  Google Scholar 

  39. Diagaradjane P, Orenstein-Cardona JM, Colón-Casasnovas NE, Deorukhkar A, Shentu S, Kuno N, Schwartz DL, Gelovani JG, Krishnan S (2008) Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin Cancer Res 14:731–741

    Article  CAS  PubMed  Google Scholar 

  40. Krishnan S, Diagaradjane P, Cho SH (2010) Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperthermia 26:775–789

    Article  PubMed Central  PubMed  Google Scholar 

  41. Lee J, Chatterjee DK, Lee MH, Krishnan S (2014) Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett 347:46–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. You J, Zhang G, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4:1033–1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PJ. (2010) Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 1–23

    Google Scholar 

  44. Drake P, Cho HJ, Shih PS, Kao CH, Lee KF, Kuo CH, Lin XZ, Lin YJ (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17:4914–4918

    Article  CAS  Google Scholar 

  45. Dennis CL, Jackson AJ, Borchers JA, Ivkov R, Foreman AR, Hoopes PJ, Strawbridge R, Pierce Z, Goerntiz E, Lau JW, Gruettner C (2008) The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia. J Appl Phys 41:134020

    Google Scholar 

  46. Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422

    Article  CAS  PubMed  Google Scholar 

  47. Ding X, Singh R, Burke A, Hatcher H, Olson J, Kraft RA, Schmid M, Carroll D, Bourland JD, Akman S, Torti FM, Torti SV (2011) Development of iron-containing multiwalled carbon nanotubes for MR-guided laser-induced thermotherapy. Nanomedicine (Lond) 6:1341–1352

    Article  CAS  Google Scholar 

  48. Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE, Curley SA (2007) Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110:2654–2665

    Article  CAS  PubMed  Google Scholar 

  49. Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672

    Article  CAS  PubMed  Google Scholar 

  50. Thomas R, Park IK, Jeong YY (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14:15910–15930

    Article  PubMed Central  PubMed  Google Scholar 

  51. Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  CAS  PubMed  Google Scholar 

  52. Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188:759–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Wabler M, Zhu WL, Hedayati M, Attaluri A, Zhou HM, Mihalic J, Geyh A, DeWeese TL, Ivkov R, Artemov D (2014) Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content. Int J Hyperthermia 30:192–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Jain PK, Huang XH, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  PubMed  Google Scholar 

  55. Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10:831–847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Seo SH, Kim BM, Joe A, Han HW, Chen X, Cheng Z, Jang ES (2014) NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials 35:3309–3318

    Article  CAS  PubMed  Google Scholar 

  58. Shah SA, Majeed A, Rashid K, Awan S-U (2013) PEG-coated folic acid-modified superparamagnetic MnFe2O4 nanoparticles for hyperthermia therapy and drug delivery. Mater Chem Phys 138:6

    Article  Google Scholar 

  59. Shah SA, Majeed A, Shafique A, Rashid K, Awan S-U (2014) Cell viability study of thermo-responsive core–shell superparamagnetic nanoparticles for multimodal cancer therapy. Appl Nanosci 4:227–232

    Article  CAS  Google Scholar 

  60. Mesbahi A (2010) A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Pract Oncol Radiother 15:176–180

    Article  PubMed Central  PubMed  Google Scholar 

  61. Mikucki M, Skitzki J, Fisher D, Luster A, Evans S (2012) Obligate role of CXCR3 chemokine receptor for trafficking of effector CD8 T cells in the tumor microenvironment. J Immunol 188

    Google Scholar 

  62. Mace TA, Zhong LW, Kokolus KM, Repasky EA (2012) Effector CD8(+) T cell IFN-gamma production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperthermia 28:9–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, Clogston JD, McNeil SE (2013) Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr Biol (Camb) 5:66–73

    Article  CAS  Google Scholar 

  64. Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC (2008) Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4:1925–1929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Kale SN, Jadhav AD, Verma S, Koppikar SJ, Kaul-Ghanekar R, Dhole SD, Ogale SB (2012) Characterization of biocompatible NiCo2O4 nanoparticles for applications in hyperthermia and drug delivery. Nanomedicine 8:452–459

    Article  CAS  PubMed  Google Scholar 

  66. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  PubMed  Google Scholar 

  67. Tomitaka A, Hirukawa A, Yamada T, Morishita S, Takemura Y (2009) Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells. J Magn Magn Mater 321:1482–1484

    Article  CAS  Google Scholar 

  68. Kim B, Han G, Toley BJ, Kim CK, Rotello VM, Forbes NS (2010) Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 5:465–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by grants from the National Institutes of Health (1R01CA155446, and U01CA151886), Department of Defense (PC111832), MD Anderson Institutional Research Grant, and the John E. and Dorothy J. Harris Endowed Professorship to SK.

Conflict of Interest The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Quini, C.C., Krishnan, S. (2015). Potential Applications of Nanoparticles for Hyperthermia. In: Asea, A., Almasoud, N., Krishnan, S., Kaur, P. (eds) Heat Shock Protein-Based Therapies. Heat Shock Proteins, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-17211-8_11

Download citation

Publish with us

Policies and ethics