Advertisement

Mathematics at University: The Anthropological Approach

  • Carl WinsløwEmail author
Chapter

Abstract

Mathematics is studied in universities by a large number of students. At the same time it is a field of research for a (smaller) number of university teachers. What relations, if any, exist between university research and teaching of mathematics? Can research “support” teaching? What research and what teaching? In this presentation we propose a theoretical framework to study these questions more precisely, based on the anthropological theory of didactics. As a main application, the links between the practices of mathematical research and university mathematics teaching are examined, in particular in the light of the dynamics between “exploring milieus” and “studying media”.

Keywords

University mathematics Tertiary Anthropological theory of the didactical 

References

  1. Ahlin, A., & Reiter, H. (2010). Problem Department. Pi Mu Epsilon Journal, 13(2), 559–560.Google Scholar
  2. Barbé, J., Bosch, M., Espinoza, L. & Gascón, J. (2005). Didactic restrictions on teachers’ practice—the case of limits of functions in Spanish high schools. Educational Studies in Mathematics, 59, 235–268.Google Scholar
  3. Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.Google Scholar
  4. Brousseau, G. (1999). Research in mathematics education: observation and … mathematics. In I. Schwank (Ed.), European research in mathematics education (Vol. 1, pp. 35–49). Osnabrück: Forschungsinstitut für Mathematikdidaktik.Google Scholar
  5. Chalice, D. (1995). How to teach a class by the Modified Moore Method. American Mathematical Monthly, 102(4), 317–321.CrossRefGoogle Scholar
  6. Chevallard, Y. (1990). On mathematics education and culture: Critical afterthoughts. Educational Studies in Mathematics, 21, 3–27.CrossRefGoogle Scholar
  7. Chevallard, Y. (1991). La transposition didactique: du savoir savant au savoir (second edition; the first edition dates from 1985). Grenoble: La Pensée Sauvage.Google Scholar
  8. Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221–266.Google Scholar
  9. Chevallard, Y. (2002). Organiser l’étude 1. Écologie & régulation. In J. L. Dorier, et al. (Eds.), Actes de la 11e école de didactique des mathématiques (pp. 41–56). Grenoble: La Pensée Sauvage.Google Scholar
  10. Chevallard, Y. (2007). Un concept en émergence: la dialectique des médias et des milieu. In G. Gueudet & Y. Matheron (Eds.), Actes du séminaire national de didactique des mathématiques, année 2007 (pp. 344–366). Paris: ARDM and IREM, University of Paris 7.Google Scholar
  11. Chevallard, Y., & Johsua, A. (1991). Un exemple d’analyse de la transposition didactique: la notion de distance. In Y. Chevallard (ed.), La transposition didactique: du savoir savant au savoir (second edition; the first edition dates from 1985) (pp. 125–198). Grenoble: La Pensée Sauvage.Google Scholar
  12. Connes, A. (1973). Une classification des facteurs de type III. Annales scientifiques de l’école normale supérieure, tome, 6, 133–252.Google Scholar
  13. Davies, P., & Hersh, R. (1981). The mathematical experience. Boston: Birkhäuser.Google Scholar
  14. Grønbæk, N., & Winsløw, C. (2007). Developing and assessing specific competencies in a first course on real analysis. In F. Hitt, G. Harel, & A. Selden (Eds.), Research in collegiate mathematics education VI (pp. 99–138). Providence, RI: American Mathematical Society.Google Scholar
  15. Gyöngyösi, E., Solovej, J., & Winsløw, C. (2011). Using CAS based work to ease the transition from calculus to real analysis. Proceedings of CERME-7. Google Scholar
  16. Halmos, P. (1985). I want to be a mathematician. An automathography. New York: Springer.CrossRefGoogle Scholar
  17. Madsen, L., & Winsløw, C. (2009). Relations between teaching and research in physical geography and mathematics at research intensive universities. International Journal of Science and Mathematics Education, 7(2009), 741–763.CrossRefGoogle Scholar
  18. Winsløw, C., & Madsen, C. (2008). Interplay between research and teaching from the perspective of mathematicians. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 2379–2388). ISBN 978-9963-671-25-0. Larnaca: University of Cyprus.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of CopenhagenCopenhagenDenmark

Personalised recommendations