Skip to main content

The Inventory Pollution-Routing Problem Under Uncertainty

  • Chapter
  • First Online:

Part of the book series: Greening of Industry Networks Studies ((GINS,volume 4))

Abstract

Carbon emissions from supply chain operations are extensively contributing to the global warming. Sustainable supply chain management literature has seen more emphasis on greening of production operations and designing of greener supply networks, considering transportation emissions as “necessary evil”. This chapter aims to investigate the economic and environmental consequences of transport routing decisions in a supply chain with vertical collaboration, for instance through Vendor Managed Inventory. An optimization model and solution method is presented for an Inventory Pollution-Routing Problem (IPRP) in which inventory and transportation costs and emissions as well as demand uncertainty concerns are explicitly incorporated. The proposed model can be used to explore possible tradeoffs between emissions costs and operational costs for green inventory routing decision making. A set of computational tests are designed for performance benchmark of the proposed model and solution method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Since this section we exploit “y” as an axillary variable.

  2. 2.

    For practical reasons it is assumed that in a vehicle trip, some of parameters remain constant on a given arc. For instance, we consider that vehicle travel at invariant lower and upper speeds of \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{v} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{v}_{ij} \,{\text{or}}\,\bar{v} = \bar{v}_{ij}\) (km/h) on arc (i, j) with road angle θ = θ ij carrying a total load, or considering a = a ij and subsequently α to be fixed, among others.

References

  • Aghezzaf, El-H, Raa, B., & Van Landeghem, H. (2006). Modeling inventory routing problems in supply chains of high consumption products. European Journal of Operational Research, 169, 1048–1063.

    Article  Google Scholar 

  • Akçelik, R., & Besley, M. (2003). Operating cost, fuel consumption, and emission models in aaSIDRA and aaMOTION. 25th Conference of Australian Institutes of Transport Research (CAITR 2003). Adelaide, Australia: University of South Australia.

    Google Scholar 

  • Barth, M., & Boriboonsomsin, K. (2009). Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transportation Research Part D, 14(6), 400–410.

    Article  Google Scholar 

  • Barth, M., Younglove, T., & Scora, G. (2005). Development of a heavy-duty diesel modal emissions and fuel consumption model. Technical Report UCB-ITS-PRR-2005-1, California PATH Program, Institute of Transportation Studies, University of California at Berkeley.

    Google Scholar 

  • Bektaş, T., & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part B, 45(8), 1232–1250.

    Article  Google Scholar 

  • Benjaafar, S., Li, Y., & Daskin, M. (2013). Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering, 10(1), 99–116.

    Article  Google Scholar 

  • Bonney, M., & Jaber, M. Y. (2011). Environmentally responsible inventory models: Non-classical models for a non-classical era. International Journal of Production Economics, 133(1), 43–53.

    Article  Google Scholar 

  • Bramel, J., & Simchi-Levi, D. (1997). The logic of logistics: Theory, algorithms, and applications for logistics management. New York: Springer.

    Book  Google Scholar 

  • Carbon Trust. (2006). Carbon footprints in the supply chain: The next step for business. Technical Report, United Kingdom.

    Google Scholar 

  • Chan, L. M. A., & Simchi-Levi, D. (1998). Probabilistic analyses and algorithms for three level distribution systems. Management Science, 44(11), 1562–1576.

    Article  Google Scholar 

  • Chan, L. M. A., Federgruen, A., & Simchi-Levi, D. (1998). Probabilistic analyses and practical algorithms for inventory-routing models. Operations Research, 46(1), 96–106.

    Article  Google Scholar 

  • Coelho, L. C., & Laporte, G. (2013). A branch-and-cut algorithm for the multi-product multi-vehicle inventory-routing problem. International Journal of Production Research, 51(23–24), 7156–7169.

    Article  Google Scholar 

  • Coelho, L. C., & Laporte, G. (2014). Improved solutions for inventory-routing problems through valid inequalities and input ordering. International Journal of Production Economics, 155, 391–397.

    Article  Google Scholar 

  • Coelho, L. C., Cordeau, J.-F., & Laporte, G. (2014). Thirty years of inventory routing. Transportation Science, 48(1), 1–19.

    Article  Google Scholar 

  • Dekker, R., Bloemhof, J., & Mallidis, I. (2012). Operations research for green logistics–An overview of aspects, issues, contributions and challenges. European Journal of Operational Research, 219(3), 671–679.

    Article  Google Scholar 

  • Demir, E., Bektaş, T., & Laporte, G. (2011). A comparative analysis of several vehicle emission models for road freight transportation. Transportation Research Part D, 16(5), 347–357.

    Article  Google Scholar 

  • Demir, E., Bektaş, T., & Laporte, G. (2014). A review of recent research on green road freight transportation. European Journal of Operational Research, 237(3), 775–793.

    Article  Google Scholar 

  • Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: Theory and applications. New York: Academic Press.

    Google Scholar 

  • Duran, M. A., & Grossmann, I. E. (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical Programming, 36(3), 307–339.

    Article  Google Scholar 

  • Edwards, J. B., & McKinnon, A. C. (2010). Comparative analysis of the carbon footprints of conventional and online retailing: A “last mile” perspective. International Journal of Physical Distribution and Logistics Management, 40(1–2), 103–123.

    Google Scholar 

  • EU. (2012). EU transport in figures. Statistical Pocketbook 2012. Luxembourg: Publication Office of the European Union.

    Google Scholar 

  • Fahimnia, B., Sarkis, J. & Davarzani, H.H. (2015a). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114.

    Google Scholar 

  • Fahimnia, B., Sarkis, J. & Eshragh A. (2015b). A tradeoff model for green supply chain planning: A leanness-versus-greenness analysis. OMEGA, 54(5), 173–190.

    Google Scholar 

  • Fletcher, R., & Leyfer, S. (1994). Solving mixed integer nonlinear programs by outer approximation. Mathematical Programming, 66(1–3), 327–349.

    Article  Google Scholar 

  • Geoffrion, A. M. (1972). Generalized benders decomposition. Journal of Optimization Theory and Applications, 10(4), 237–260.

    Article  Google Scholar 

  • Grossmann, I. E., & Kravanja, Z. (1995). Mixed-integer nonlinear programming techniques for process systems engineering. Computers & Chemical Engineering, 19, 189–204.

    Article  Google Scholar 

  • Herer, Y. T., Tzur, M., & Yucesan, E. (2006). The multi-location transshipment problem. IIE Transactions on Scheduling and Logistics, 38(3), 185−200.

    Google Scholar 

  • Hua, G., Cheng, T. C. E., & Wang, S. (2011). Managing carbon footprints in inventory management. International Journal of Production Economics, 132(2), 178–185.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2007). IPCC Fourth Assessment Report: Climate Change (AR4).

    Google Scholar 

  • Jensen, S. S. (1995). Driving patterns and emissions from different types of roads. The Science of the Total Environment, 169(1), 123–128.

    Article  Google Scholar 

  • Kaufmann, A., & Gupta, M. M. (1991). Introduction to fuzzy arithmetic: Theory and applications. New York: Van Nostrand, Reignhold.

    Google Scholar 

  • Koç, C., Bektaş, T., Jabali, O., & Laporte, G. (2014). The fleet size and mix pollution-routing problem. Transportation Research Part B, 70(5), 239–254.

    Article  Google Scholar 

  • Lin, C., Choy, K. L., Ho, G. T. S., Chung, S. H., & Lam, H. Y. (2014). Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications, 41(4), 1118–1138.

    Article  Google Scholar 

  • Liu, B., & Iwamura, K. B. (1998a). A note on chance constrained programming with fuzzy coefficients. Fuzzy Sets and Systems, 100(1–3), 229–233.

    Google Scholar 

  • Liu, B., & Iwamura, K. B. (1998b). Chance constraint programming with fuzzy parameters. Fuzzy Sets and Systems, 94(2), 227–237.

    Article  Google Scholar 

  • Mercer, A., & Tao, X. (1996). Alternative inventory and distribution policies of a food manufacturer. The Journal of Operational Research Society, 47(6), 755–766.

    Article  Google Scholar 

  • Messac, A., Ismail-Yahaya, A., & Mattson, C. A. (2003). The normalized normal constraint, method for generating the Pareto frontier. Structural and Multidisciplinary Optimization, 25(2), 86–98.

    Article  Google Scholar 

  • Mirzapour Al-e-hashem, S. M. J., & Rekik, Y. (2014). Multi-product multi-period inventory routing problem with a transshipment option: A green approach. International Journal of Production Economics, 157, 80–88.

    Article  Google Scholar 

  • Nelder, J. A., & Mead, R. (1965). A simplex for function minimization. Computer Journal, 7(4), 308–313.

    Article  Google Scholar 

  • Organisation for Economic Co–operation and Development (OECD). (2012). Greenhouse gas emissions and the potential for mitigation from materials management within OECD countries.

    Google Scholar 

  • Panda, D., Rong, M., & Maiti, M. (2014). Fuzzy mixture two warehouse inventory model involving fuzzy random variable lead time demand and fuzzy total demand. Central European Journal of Operations Research, 22(1), 187–209.

    Article  Google Scholar 

  • Rice, J., & Van Zwet, E. (2004). A simple and effective method for predicting travel times on freeways. IEEE Transactions on Intelligent Transportation Systems, 5(3), 200–207.

    Article  Google Scholar 

  • Savelsbergh, M., & Song, J. (2007). Inventory routing with continuous moves. Computers & Operations Research, 34(6), 1744–1763.

    Article  Google Scholar 

  • Sbihi, A., & Eglese, R. W. (2007). Combinatorial optimization and green logistics. 4OR. A Quarterly Journal of Operations Research, 5(2), 99–116.

    Google Scholar 

  • Silva, C. M., Farias, T. L., Frey, H. C., & Rouphail, N. M. (2006). Evaluation of numerical models for simulation of real-world hot-stabilized fuel consumption and emissions of gasoline light-duty vehicles. Transportation Research Part D, 11(5), 377–385.

    Article  Google Scholar 

  • Suzuki, Y. (2011). A new truck-routing approach for reducing fuel consumption and pollutants emission. Transportation Research Part D, 16(1), 73–77.

    Article  Google Scholar 

  • Tong, H. Y., Hung, W. T., & Cheung, C. S. (2000). On-road motor vehicle emissions and fuel consumption in urban driving conditions. Journal of the Air and Waste Management Association, 50(4), 543–554.

    Article  Google Scholar 

  • Treitl, S., Nolz, P. C., & Jammernegg, W. (2012). Incorporating environmental aspects in an inventory routing problem. A case study from the petrochemical industry. Flexible Services and Manufacturing Journal, 26(1–2), 143–169.

    Google Scholar 

  • Venkat, K. (2007). Analyzing and optimizing the environmental performance of supply chains. In: Proceedings of the ACCEE summer study on energy efficiency in industry. New York, USA: White Plains.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Emrah Demir for the constructive comments on the ecological stand of the model, as well as Leandro C. Coelho for the inputs during the early stages of the model development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hooman Malekly .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Fuzzy Number

The theory of fuzzy sets introduced by Zadeh (1965) was developed to describe vagueness and ambiguity in the real world system. Zadeh defined a fuzzy set \({{\tilde{a}}}\) in a universe of discourse X as a class of objects with a continuum of grades of memberships. Such a set is characterized by a membership function \(\mu_{{\tilde{a}}} (x)\) which associates with each point x in X a real number in the interval [0,1]. \(\mu_{{\tilde{a}}} (x)\) represents the grade of membership of x in \({{\tilde{a}}}.\) A fuzzy set \({{\tilde{a}}}\) in the universe of discourse R (set of real numbers) is called a fuzzy number if it satisfies the following conditions:

  1. (i)

    \({{\tilde{a}}}\) is normal i.e. there exists at least one \(x \in {\text{R}}\) such that \(\mu_{{\tilde{a}}} (x) = 1.\)

  2. (ii)

    \({{\tilde{a}}}\) is convex.

  3. (iii)

    the membership function \(\mu_{{{\tilde{a}}}} (x) , x \in {\text{R}}\) is at least piecewise continuous.

1.1.1 Triangular Fuzzy Number

Triangular fuzzy number (TFN) \(({{\tilde{a}}})\) is the fuzzy number with the membership function \(\mu_{{{\tilde{a}}}} (x) ,\) a continuous mapping: \(\mu_{{{\tilde{a}}}} (x) : {\text{R}} \to [0,1] ,\) where

$$\mu_{{\tilde{a}}} (x) = \left\{ {\begin{array}{*{20}l} 0 \hfill & \{ - \infty < x < a_{1} \} \hfill \\ {\frac{{x - a_{1} }}{{a_{2} - a_{1} }}} \hfill & {a_{1} \le x < a_{2} } \hfill \\ {\frac{{a_{3} - x}}{{a_{3} - a_{2} }}} \hfill & {a_{2} \le x \le a_{3} } \hfill \\ 0 \hfill & {a_{3} < x < \infty .} \hfill \\ \end{array} } \right.$$
(6.38)

1.1.2 α-Cut of a Fuzzy Number

An α-cut of a fuzzy number \({{\tilde{a}}}\) is defined as a crisp set

$$a_{\alpha } = \left\{ {x{:}\, \mu_{{\tilde{a}}} (x) \ge \alpha ,\quad x \in {\text{R}}} \right\}\quad {\text{where}}\,\eta \;\left[ {0,1} \right].$$

1.1.3 Approximate Value of Triangular Fuzzy Number (TFN)

According to Kaufmann and Gupta (1991), the approximated value of TFN \(\tilde{a} \equiv \left( {a_{1} ,a_{2} ,a_{3} } \right)\) is given by \(\hat{a} = {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 4$}}\left( {a_{1} + 2a_{2} + a_{3} } \right).\)

1.1.4 Algebraic Operation of Fuzzy Numbers

Addition

Let \(\tilde{a} \equiv \left( {a_{1} ,a_{2} ,a_{3} } \right)\) and \(\underline{{\tilde{b}}} \equiv \left( {b_{1} ,b_{2} ,b_{3} } \right)\) be two triangular fuzzy numbers. Using max-min convolution on fuzzy numbers \({{\tilde{a}}}\) and \({{\tilde{b}}}\) the membership function of the resulting fuzzy number \({{\tilde{a}}} \, ({+}) \, {{\tilde{b}}}\) can be obtained as \(\vee_{z = x + y} \left( {\mu_{{\tilde{a}}} (x) \wedge \mu_{{\tilde{b}}} (y)} \right),\;\forall_{x,y,z} \in {\text{R}}\) where the symbols ‘\(\wedge\)’ and ‘\(\vee\)’ are used for minimum and maximum, respectively. In short we can write \(\tilde{a} \, ( + ) \, \tilde{b} = \left( {a_{1} ,a_{2} ,a_{3} } \right) ( { + )}\left( {b_{1} ,b_{2} ,b_{3} } \right).\)

Scalar multiplication

For any real constant t,

$$t\tilde{a} = \left\{ \begin{aligned} (ta_{1} ,ta_{2} ,ta_{3} )\quad t \ge 0 \hfill \\ (ta_{3} ,ta_{2} ,ta_{1} )\quad t < 0. \hfill \\ \end{aligned} \right.$$

1.1.5 Fuzzy Possibility Techniques

Let \({{\tilde{a}}}\) and \({{\tilde{b}}}\) be two fuzzy quantities with membership functions \(\mu_{{\tilde{a}}} (x)\) and \(\mu_{{\tilde{b}}} (y),\) respectively. Then according to Dubois and Prade (1980), Liu and Iwamura (1998a, b) \(pos\left( {\tilde{a}*\tilde{b}} \right) = \sup \left\{ {\hbox{min} \left( {\mu_{{\tilde{a}}} (x),\mu_{{\tilde{b}}} (y)} \right) {:}\, x,y \in {\text{R}}, \, x*y} \right\},\) where the abbreviation ‘pos’ represents possibility and * is any of the relations <, >, =, ≤, ≥.

If \({\tilde{a}}\) and \({\tilde{b}}\) are two fuzzy numbers defined on R and \({\tilde{u}} = f({\tilde{a}}, {\tilde{b}})\) where \(f {:} \, {\text{R}} \times {\text{R}} \to {\text{R}}\) is a binary operation then the membership function \(\mu_{\tilde{u}}\) of \({\tilde{u}}\) is defined as \(\mu_{\tilde{u}} (u) = \sup \{ {\min(\mu_{\tilde{a}}(x), \mu_{\tilde{b}}(y)) {:}\, x, y \in {\text{R}} }\) and u = f(x,y), ∀u ∈ R}.

1.2 Random Variable

Let \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} \, ( {=} (m,\sigma^{2} ))\) be a continuous random variable with probability density function (PDF) \(f_{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} }} \left( l \right)\) whose mean and variance are m and σ 2, respectively. Similarly, let \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L}^{\prime} \,( {=} (m^{\prime} , \sigma^{\prime 2} ))\) be another random variable with pdf \(f_{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L^{\prime}} }} (l^{\prime}).\) If \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} }\) and \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L^{\prime}} }\) are two independent random variables, then we have the following algebraic operations:

  • Addition:

$$\underline{L}_{1} [ + ]\underline{L}_{2} = (m_{1} ,\sigma_{1}^{2} )[ + ]{\kern 1pt} {\kern 1pt} (m_{2} ,\sigma_{2}^{2} ) = \,(m_{1} + m_{2} ,\sigma_{1}^{2} + \sigma_{2}^{2} ).$$

Here, according to sum-product convolution \(\varvec{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} }( = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} + \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L}^{\prime})\) is a random variable with the same type of pdf \(f_{{\varvec{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} }}} \left( \varvec{l} \right) = (\int\nolimits_{\text{R}} f(\varvec{l} - l^{\prime})f^{\prime} (l^{\prime})dl^{\prime}\) with mean \(\varvec{m^{\prime}}^{2} ( {=} m^{2} + m^{\prime} )\) and variance \(\varvec{\sigma}^{\prime 2} ( = \sigma^{2} + \sigma^{\prime 2} ) .\)

  • Scalar multiplication:

\(t\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} = (tm,t^{2} \sigma^{2} ).\) Here tL and L have the same type of PDF.

1.3 Hybrid Number (Kaufmann and Gupta 1991)

Assume \(\tilde{A}( = (\tilde{A},\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} ))\) is a hybrid number. Here the couple (\(\tilde{A},\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L}\)) represents the addition to a fuzzy number with a random variable without altering the characteristic of each one and without decreasing the amount of available information where à is a fuzzy number and L is the random variable with density function \(f_{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} }} \left( l \right).\) Let \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\tilde{A}} ( = (\tilde{A},\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} ))\) and \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\tilde{A}}^{\prime}( = (\tilde{A}^{\prime},\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L}^{\prime}))\) be two hybrid numbers in R where \(f_{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} }} \left( l \right)\) and \(f_{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L}^{\prime}}} (l^{\prime})\) are the pdfs of L and L′, respectively. So a hybrid convolution for addition will be defined as \((\tilde{A},\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} ) \oplus (\tilde{A}{\prime} ,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L}^{\prime}) = (\tilde{A}\left( + \right)\tilde{A}^{\prime} ,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} [ + ]\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L}^{\prime}) = (\tilde{\varvec{A}},\varvec{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} }),\) where (+) represents the max-min convolution for addition of fuzzy subsets and [+] represents the sum-product convolution for addition of random variables. We denote the couple \((\tilde{\varvec{A}},\varvec{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} })\) by the symbol \(\tilde{\varvec{A}}( + )^{\prime}\varvec{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} } .\)

So,\({\kern 1pt} \mu_{{\tilde{A}_{1} ( + )\tilde{A}_{2} }} (z) = \vee_{z = x + y} (\mu_{{\tilde{A}_{1} }} (x) \wedge \mu_{{\tilde{A}_{2} }} (y)),\forall x,y,z \in \text{R}\) and \(f(l) = \int\nolimits_{\text{R}} f_{1} (l - l_{2} )f_{2} (l_{2} )dl_{2}\) or \(\int\nolimits_{\text{R}} f_{1} (l_{1} )f_{2} (l - l_{1} )dl_{1} .\)

Note 1

A fuzzy number is a special case of a hybrid number if \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\tilde{A}} = (\tilde{A},\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{0} ),\) where 0 is the trivial random variable with the following probabilities:

$$\begin{aligned} P(l) & = 1,\quad l = 0 \\ & = 0{\kern 1pt} ,\quad l \ne 0. \\ \end{aligned}$$

Note 2

A random variable is also a special case of a hybrid number if \(\tilde{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} } = \left( {\tilde{0},\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} } \right),\) where \({\tilde{0}}\) is the trivial fuzzy number with membership function

$$\begin{aligned} \mu_{{\tilde{0}}} (x) & = 1,\quad x = 0 \\ & = 0{\kern 1pt} ,\quad x \ne 0. \\ \end{aligned}$$

Note 3

\(\underline{{\tilde{0}}} = (0, 0)\) is the neutral for addition of hybrid numbers.

If \(\tilde{u}_{1}\) is a fuzzy cost, \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u}_{2}\) is a random cost and u 3 is a fixed cost then the total cost can be expressed as

$$\tilde{u}_{1} [ + ]{\kern 1pt} \underline{u}_{2} [ + ]{\kern 1pt} u_{3} = (\tilde{u}_{1} ,0){\kern 1pt} [ + ]{\kern 1pt} (0,\underline{u}_{2} ){\kern 1pt} [ + ]{\kern 1pt} (0,u_{3} ) = (\tilde{u}_{1} ,\underline{u}_{2} ( + )^{\prime}u_{3} ) = (\tilde{u}_{1} ( + )u_{3} ,\underline{u}_{2} ){\kern 1pt} .$$
(6.39)

We can consider the fixed number like a sum of two parts \(u_{3} = u^{\prime}_{3} + u^{\prime\prime}_{3}\) and write for (6.39)

$$\tilde{u}_{1} [ + ]{\kern 1pt} \underline{u}_{2} [ + ]{\kern 1pt} u_{3} = (\tilde{u}_{1} [ + ]{\kern 1pt} u^{\prime}_{3} ,\underline{u}_{2} [ + ]{\kern 1pt} u^{\prime\prime}_{3} ).$$
(6.40)

The mathematical expectation of a hybrid number is defined as follows.

A function ϕ(x) in R that is nonnegative and monotonically increasing is:

$$\begin{aligned} & \forall x_{1} ,x_{2} \in {\text{R}}: \\ & (x_{1} > x_{2} ) \Rightarrow (\varphi (x_{2} ) \ge \varphi (x_{1} )){\kern 1pt} . \\ \end{aligned}$$
(6.41)

For a closed interval of R, \([a_{\alpha }^{1} ,a_{\alpha }^{2} ]\) we have:

$$[\phi {\kern 1pt} (a_{\alpha }^{1} ),\phi {\kern 1pt} (a_{\alpha }^{2} )] \subset \text{R}$$
(6.42)

and for l ∈ R:

$$[\phi {\kern 1pt} (a_{\alpha }^{1} + l),\phi {\kern 1pt} (a_{\alpha }^{2} + l)] \subset \text{R}.$$
(6.43)

If l is the value of the random variable L, the lower and upper bounds of (6.43) depend only on l for a given level α. The mathematical expectation for each bound is now computed:

$$E[\phi {\kern 1pt} (a_{\alpha }^{1} + l),\phi {\kern 1pt} (a_{\alpha }^{2} + l)] = \left[ {\int\limits_{{l_{1} }}^{{l_{2} }} \phi (a_{\alpha }^{1} + l){\kern 1pt} \cdot {\kern 1pt} f(l)dl,\int\limits_{{l_{1} }}^{{l_{2} }} \phi (a_{\alpha }^{2} + l){\kern 1pt} \cdot {\kern 1pt} f(l)dl} \right].$$
(6.44)

Theorem

(Kaufmann and Gupta 1991). The membership function of the mathematical expectation of a hybrid number \((\tilde{A},\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} )\) is the membership of \(\tilde{A}\) shifted by the mathematical expectation of \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L}\)

Proof

Using the intervals of confidence of level α:

$$\begin{aligned} E_{\alpha } (\tilde{A}[ + ]\underline{L} ) & = \left[ {\int\limits_{{l_{1} }}^{{l_{2} }} (a_{\alpha }^{1} + l){\kern 1pt} \cdot f(l)dl,\int\limits_{{l_{1} }}^{{l_{2} }} (a_{\alpha }^{2} + l){\kern 1pt} \cdot f(l)dl} \right] \\ & = \left[ {a_{\alpha }^{1} {\kern 1pt} \cdot {\kern 1pt} \int\limits_{{l_{1} }}^{{l_{2} }} f(l)dl{\kern 1pt} + {\kern 1pt} \int\limits_{{l_{1} }}^{{l_{2} }} l{\kern 1pt} \cdot {\kern 1pt} f(l)dl,a_{\alpha }^{2} {\kern 1pt} \cdot {\kern 1pt} \int\limits_{{l_{1} }}^{{l_{2} }} f(l)dl{\kern 1pt} + {\kern 1pt} \int\limits_{{l_{1} }}^{{l_{2} }} l{\kern 1pt} \cdot {\kern 1pt} f(l)dl} \right] \\ & = \left[ {a_{\alpha }^{1} + E(l){\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} a_{\alpha }^{2} + E(l)} \right] \\ \end{aligned}$$
(6.45)

Hence, in a hybrid sum, if the random variables satisfy their random expectation, they will have the same effect as ordinary numbers, shifting the sum of fuzzy numbers.

Using the notation \(({\tilde {A}},\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} ) = {\tilde{A}}( + )^{\prime} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} ,\) where \(\tilde{A}\) is a triangular fuzzy number, the following example is illustrated.

Example

Let \(\tilde{A}_{1} = (3,5,9)( + )^{\prime}(6,1.2)\) and \(\tilde{A}_{2} = (6,7,10)( + )^{\prime}(7,1.8)\) be two hybrid numbers, then

$$\begin{aligned} \underline{{\tilde{A}}}_{1} \oplus \underline{{\tilde{A}}}_{2} & = [(3,5,9)( + )^{\prime}(6,1.2)] \oplus [(6,7,10)( + )^{\prime}(7,1.8)] \\ & = [(9,11,15)( + )^{\prime}(0,1.2)] \oplus [(13,14,17)( + )^{\prime}(0,1.8)] \\ & = (22,25,32)( + )^{\prime}(0,3.0). \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Malekly, H. (2015). The Inventory Pollution-Routing Problem Under Uncertainty. In: Fahimnia, B., Bell, M., Hensher, D., Sarkis, J. (eds) Green Logistics and Transportation. Greening of Industry Networks Studies, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-17181-4_6

Download citation

Publish with us

Policies and ethics