Skip to main content

Microvillus Inclusion Disease and Tufting Enteropathy

  • Chapter
  • First Online:
Textbook of Pediatric Gastroenterology, Hepatology and Nutrition

Abstract

The heterogeneous group of protracted diarrheas starting in the first months of life traditionally grouped under “intractable diarrhea of infancy” includes many different diseases. Some children are affected by diseases that impair the normal development of intestinal epithelium, causing a severe watery diarrhea that usually requires total parenteral nutrition. The first to be described was microvillus inclusion disease that usually starts in the first days of life with a secretory diarrhea that is worsened by feedings (early-onset microvillus inclusion disease). In a small percentage of cases, diarrhea starts later in life, between 1 and 3 months (late-onset microvillus atrophy). The early form is very severe, and intestinal transplantation should be strongly considered in these cases.

A second congenital epithelial disease is “tufting enteropathy” (intestinal epithelial dysplasia). Tuft enteropathy is associated to a severe secretory diarrhea, which worsens with nutrition. That is why affected children have to be treated with total parenteral nutrition. Cases totally dependent on total parenteral nutrition are candidates for intestinal transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avery GB, Villavicencio O, Lilly JR, Randolph JG. Intractable diarrhea in early infancy. Pediatrics 1968;41:712–22

    CAS  PubMed  Google Scholar 

  2. Hyman CJ, Reiter J, Rodnan J, Drash AL. Parenteral and oral alimentation in the treatment of the nonspecific protracted diarrheal syndrome of infancy. J Pediatr. 1971;78:17–29.

    Article  CAS  PubMed  Google Scholar 

  3. Shwachman H, Filler RM, Khaw KT. A new method of treating malnourished infants with severe chronic diarrhea. Acta Pediatr Scand. 1970;59:446–7.

    Google Scholar 

  4. Shwachman H, Lloyd-Still JD, Khaw KT, Antonowicz I. Protracted diarrhea of infancy treated by intravenous alimentation. II: studies of small intestinal biopsy results. Am J Dis Child. 1973;125:365–8.

    Article  CAS  PubMed  Google Scholar 

  5. Walker-Smith J A. Intractable diarrhea of infancy. Saudi J Gastroenterol. 1995;1:152–6.

    CAS  PubMed  Google Scholar 

  6. Larcher VF, Shepherd R, Francis DE, Harries JT. Protracted diarrhoea in infancy. Analysis of 82 cases with particular reference to diagnosis and management. Arch Dis Child. 1977;52:597–605.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sanderson IR, Risdon RA, Walker-Smith JA. Intractable ulcerating enterocolitis of infancy. Arch Dis Child. 1991;66:295–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Thapar N, Shah N, Ramsay AD, Lindley KJ, Milla PJ. Long-term outcome of intractable ulcerating enterocolitis of infancy. J Pediatr Gastroenterol Nutr. 2005;40:582–8.

    Article  PubMed  Google Scholar 

  9. Murch SH, Winyard PJ, Koletzko S, Wehner B, Cheema HA, Risdon RA, et al. Congenital enterocyte heparan sulphate deficiency with massive albumin loss, secretory diarrhoea, and malnutrition. Lancet 1996;347:1299–301.

    Article  CAS  PubMed  Google Scholar 

  10. Bode L, Salvestrini C, Park PW, Li JP, Esko JD, Yamaguchi Y, et al. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest. 2008;118:229–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bode L, Freeze HH. Applied glycoproteomics–approaches to study genetic-environmental collisions causing protein-losing enteropathy. Biochim Biophys Acta. 2006;1760:547–59.

    Article  CAS  PubMed  Google Scholar 

  12. Lachaux A, Bouvier R, Loras-Duclaux I, Chappuis JP, Meneguzzi G, Ortonne JP. Isolated deficient alpha6beta4 integrin expression in the gut associated with intractable diarrhea. J Pediatr Gastroenterol Nutr. 1999;29:395–401.

    Article  CAS  PubMed  Google Scholar 

  13. Salvestrini C, McGrath JA, Ozoemena L, Husain K, Buhamrah E, Sabery N, et al. Desquamative enteropathy and pyloric atresia without skin disease caused by a novel intracellular beta4 integrin mutation. J Pediatr Gastroenterol Nutr. 2008;47:585–91.

    Article  PubMed  Google Scholar 

  14. Girault D, Goulet O, Le Deist F, Brousse N, Colomb V, Césarini JP, et al. Intractable infant diarrhea associated with phenotypic abnormalities and immunodeficiency. J Pediatr. 1994;125:36–42.

    Article  CAS  PubMed  Google Scholar 

  15. Stankler L, Lloyd D, Pollitt RJ, Gray ES, Thom H, Russell G. Unexplained diarrhoea and failure to thrive in two siblings with unusual facies and abnormal scalp hair shafts: a new syndrome. Arch Dis Child. 1982;57:212–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Verloes A, Lombet J, Lambert Y, Hubert AF, Deprez M, Fridman V, et al. Tricho-hepato-enteric syndrome: further delineation of a distinct syndrome with neonatal hemochromatosis phenotype, intractable diarrhea, and hair anomalies. Am J Med Genet. 1997;68:391–5.

    Article  CAS  PubMed  Google Scholar 

  17. Fabre A, André N, Breton A, Broué P, Badens C, Roquelaure B. Intractable diarrhea with “phenotypic anomalies” and tricho-hepato-enteric syndrome: two names for the same disorder. Am J Med Genet A. 2007;143A:584–8

    Article  PubMed  Google Scholar 

  18. Hartley JL, Zachos NC, Dawood B, Donowitz M, Forman J, Pollitt RJ, et al. Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology 2010;138:2388–98,.e1–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Davidson GP, Cutz E, Hamilton JR, Gall DG. Familial enteropathy: a syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology 1978;75:783–90.

    CAS  PubMed  Google Scholar 

  20. Morroni M, Cangiotti AM, Guarino A, Cinti S. Unusual ultrastructural features in microvillous inclusion disease: a report of two cases. Virchows Arch. 2006;448:805–10.

    Article  PubMed  Google Scholar 

  21. Schmitz J, Ginies JL, Arnaud-Battandier F, et al. Congenital microvillous atrophy, a rare cause of neonatal intractable diarrhoea. Pediatr Res. 1982;16:1014.

    Google Scholar 

  22. Goutet JM, Boccon-Gibod L, Chatelet F, Ploussard JP, Navarro J, Polonovski CI. Familial protracted diarrhoea with hypoplastic villous atrophy: report of two cases. Pediatr Res. 1982;16:1045.

    Google Scholar 

  23. Phillips AD, Jenkins P, Raafat F, Walker-Smith JA. Congenital microvillous atrophy: specific diagnostic features. Arch Dis Child. 1985;60:135–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Guarino A, Nocerino A, Cinti S, Berni Canani R, Terracciano L, Raimondi F, Guandalini S. Atrofia congenita dei microvilli intestinali. Riv Ital Ped. 1992;18:150–3.

    Google Scholar 

  25. Cutz E, Rhoads JM, Drumm B, Sherman PM, Durie PR, Forstner GG. Microvillus inclusion disease: an inherited defect of brush-border assembly and differentiation. N Engl J Med. 1989;320:646–51.

    Article  CAS  PubMed  Google Scholar 

  26. van der Velde KJ, Dhekne HS, Swertz MA, Sirigu S, Ropars V, Vinke PC, et al. An overview and online registry of microvillus inclusion disease patients and their MYO5B mutations. Hum Mutat. 2013;34:1597–605.

    Article  PubMed  Google Scholar 

  27. Phillips AD, Schmitz J. Familial microvillous atrophy: a clinicopathological survey of 23 cases. J Pediatr Gastroenterol Nutr. 1992;14:380–96.

    Article  CAS  PubMed  Google Scholar 

  28. Mierau GW, Wills EJ, Wyatt-Ashmead J, Hoffenberg EJ, Cutz E. Microvillous inclusion disease: report of a case with atypical features. Ultrastruct Pathol. 2001;25:517–21.

    Article  CAS  PubMed  Google Scholar 

  29. Phillips AD, Szafranski M, Man LY, Wall WJ. Periodic acid-Schiff staining abnormality in microvillous atrophy: photometric and ultrastructural studies. J Pediatr Gastroenterol Nutr. 2000;30:34–42.

    Article  CAS  PubMed  Google Scholar 

  30. Groisman GM, Amar M, Livne E. CD10: a valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy). Am J Surg Pathol. 2002;26:902–7.

    Article  PubMed  Google Scholar 

  31. Koepsell SA, Talmon G. Light microscopic diagnosis of microvillus inclusion disease on colorectal specimens using CD10. Am J Surg Pathol. 2010;34:970–2.

    Article  PubMed  Google Scholar 

  32. Weeks DA, Zuppan CW, Malott RL, Mierau GW. Microvillous inclusion disease with abundant vermiform, electron-lucent vesicles. Ultrastruct Pathol. 2003;27:337–40.

    Article  PubMed  Google Scholar 

  33. Guandalini S, Nocerino A, Saitta F, Fasano A, Ascione G, De Curtis M, et al. Valutazione dell’assorbimento di elettroliti ed acqua nel colon di un lattante affetto da atrofia congenita dei microvilli. Riv Ital Pediatr. 1987;13:76

    Google Scholar 

  34. Müller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL, Heinz-Erian P, et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet. 2008;40:1163–5.

    Article  PubMed  Google Scholar 

  35. Erickson RP, Larson-Thomé K, Valenzuela RK, Whitaker SE, Shub MD. Navajo microvillous inclusion disease is due to a mutation in MYO5B. Am J Med Genet A. 2008;146A:3117–9.

    Article  CAS  PubMed  Google Scholar 

  36. Schafer JC, Baetz NW, Lapierre LA, McRae RE, Roland JT, Goldenring JR. Rab11-FIP2 interaction with MYO5B regulates movement of Rab11a-containing recycling vesicles. Traffic 2014;15:292–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009;10:597–608.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Szperl AM, Golachowska MR, Bruinenberg M, Prekeris R, Thunnissen AM, Karrenbeld A, et al. Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease. J Pediatr Gastroenterol Nutr. 2011;52:307–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Talmon G, Holzapfel M, DiMaio DJ, Muirhead D. Rab11 is a useful tool for the diagnosis of microvillous inclusion disease. Int J Surg Pathol. 2012;20:252–6.

    Article  PubMed  Google Scholar 

  40. Dhekne HS, Hsiao NH, Roelofs P, Kumari M, Slim CL, Rings EH, van Ijzendoorn SC. Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes. J Cell Sci. 2014; 127(Pt 5):1007–17.

    Article  CAS  PubMed  Google Scholar 

  41. Golachowska MR, van Dael CM, Keuning H, Karrenbeld A, Hoekstra D, Gijsbers CF, et al. MYO5B mutations in patients with microvillus inclusion disease presenting with transient renal Fanconi syndrome. J Pediatr Gastroenterol Nutr. 2012;54:491–8.

    Article  CAS  PubMed  Google Scholar 

  42. Wiegerinck CL, Janecke AR, Schneeberger K, Vogel GF, van Haaften-Visser DY, Escher JC, et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology 2014;147:65–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ruemmele FM, Schmitz J, Goulet O. Microvillous inclusion disease (microvillous atrophy). Orphanet J Rare Dis. 2006;1:22 (Review).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Kennea N, Norbury R, Anderson G, Tekay A. Congenital microvillous inclusion disease presenting as antenatal bowel obstruction. Ultrasound Obstet Gynecol. 2001;17:172–4.

    Article  CAS  PubMed  Google Scholar 

  45. Chen CP, Su YN, Chern SR, Wu PC, Wang W. Prenatal diagnosis of microvillus inclusion disease. Taiwan J Obstet Gynecol. 2011;50:399–400.

    Article  PubMed  Google Scholar 

  46. Chen CP, Chiang MC, Wang TH, Hsueh C, Chang SD, Tsai FJ, et al. Microvillus inclusion disease: prenatal ultrasound findings, molecular diagnosis and genetic counseling of congenital diarrhea. Taiwan J Obstet Gynecol. 2010;49:487–94.

    Article  PubMed  Google Scholar 

  47. Girard M, Lacaille F, Verkarre V, Mategot R, Feldmann G, Grodet A, et al. MYO5B and BSEP contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology 2013;60:301–16.

    Article  Google Scholar 

  48. Ruemmele FM, Jan D, Lacaille F, Cézard JP, Canioni D, Phillips AD, et al. New perspectives for children with microvillous inclusion disease: early small bowel transplantation. Transplantation 2004;77:1024–8.

    Article  PubMed  Google Scholar 

  49. Halac U, Lacaille F, Joly F, Hugot JP, Talbotec C, Colomb V, et al. Microvillous inclusion disease: how to improve the prognosis of a severe congenital enterocyte disorder. J Pediatr Gastroenterol Nutr. 2011;52:460–5.

    Article  PubMed  Google Scholar 

  50. Reifen RM, Cutz E, Griffiths AM, Ngan BY, Sherman PM. Tufting enteropathy: a newly recognized clinicopathological entity associated with refractory diarrhea in infants. J Pediatr Gastroenterol Nutr. 1994;18:379–85.

    Article  CAS  PubMed  Google Scholar 

  51. Goulet O. Intestinal epithelial dysplasia: a new entity. Arch Pediatr. 1996;3(suppl 1):324s–5s.

    Article  PubMed  Google Scholar 

  52. Goulet O, Salomon J, Ruemmele F, de Serres NP, Brousse N. Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis. 2007;2:20.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Bird LM, Sivagnanam M, Taylor S, Newbury RO. A new syndrome of tufting enteropathy and choanal atresia, with ophthalmologic, hematologic and hair abnormalities. Clin Dysmorphol. 2007;16:211–21.

    Article  PubMed  Google Scholar 

  54. Roche O, Putterman M, Salomon J, Lacaille F, Brousse N, Goulet O, Dufier JL. Superficial punctate keratitis and conjunctival erosions associated with congenital tufting enteropathy. Am J Ophthalmol. 2010;150:116-21.e1.

    Article  PubMed  Google Scholar 

  55. Sivagnanam M, Mueller JL, Lee H, Chen Z, Nelson SF, Turner D, et al. Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology. 2008;135:429–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Sivagnanam M, Janecke AR, Müller T, Heinz-Erian P, Taylor S, Bird LM. Case of syndromic tufting enteropathy harbors SPINT2 mutation seen in congenital sodium diarrhea. Clin Dysmorphol. 2010;19:48.

    Article  PubMed  Google Scholar 

  57. Heinz-Erian P, Müller T, Krabichler B, Schranz M, Becker C, Rüschendorf F, et al. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet. 2009;84:188–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Salomon J, Goulet O, Canioni D, Brousse N, Lemale J, Tounian P, et al. Genetic characterization of congenital tufting enteropathy: EpCAM associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet. 2014;133:299–310.

    Article  CAS  PubMed  Google Scholar 

  59. El-Matary W, Dalzell AM, Kokai G, Davidson JE. Tufting enteropathy and skeletal dysplasia: is there a link? Eur J Pediatr. 2007;166:265–8.

    Article  PubMed  Google Scholar 

  60. Patey N, Scoazec JY, Cuenod-Jabri B, Canioni D, Kedinger M, Goulet O, Brousse N. Distribution of cell adhesion molecules in infants with intestinal epithelial dysplasia (tufting enteropathy). Gastroenterology 1997;113:833–43.

    Article  CAS  PubMed  Google Scholar 

  61. Ranganathan S, Schmitt LA, Sindhi R. Tufting enteropathy revisited: the utility of MOC31 (EpCAM) immunohistochemistry in diagnosis. Am J Surg Pathol. 2014;38:265–72.

    Article  PubMed  Google Scholar 

  62. Lemale J, Coulomb A, Dubern B, Boudjemaa S, Viola S, Josset P, et al. Intractable diarrhea with tufting enteropathy: a favorable outcome is possible. J Pediatr Gastroenterol Nutr. 2011;52:734–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Nocerino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nocerino, A., Guandalini, S. (2016). Microvillus Inclusion Disease and Tufting Enteropathy. In: Guandalini, S., Dhawan, A., Branski, D. (eds) Textbook of Pediatric Gastroenterology, Hepatology and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-319-17169-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17169-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17168-5

  • Online ISBN: 978-3-319-17169-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics