Skip to main content

Termination of Elastic Range of Pressure Sensitive Materials—Isotropic and Anisotropic Initial Yield/Failure Criteria

  • Chapter
  • First Online:
Book cover Mechanics of Anisotropic Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Yield/failure initiation criteria discussed in this chapter account for the three following effects: the hydrostatic pressure dependence, tension/compression asymmetry, and isotropic or anisotropic material response. For isotropic materials, the criteria accounting for pressure/compression asymmetry (strength differential effect) must include all three stress invariants (Iyer, Gao, Yoon, Coulomb–Mohr criteria). In a narrower case, when only pressure sensitivity is accounted for, rotationally symmetric surfaces independent of the third invariant are considered and broadly discussed (Burzyński, Drucker–Prager criteria). For anisotropic materials, the explicit formulation based on either all three common invariants (Goldenblat–Kopnov, Kowalsky) or the first and second common invariants (von Mises–Tsai–Wu) is addressed, especially in case of transverse isotropy when the difference between tetragonal and hexagonal symmetries is highlighted. A mixed way to formulate pressure sensitive tension/compression asymmetric initial failure criteria capable of describing fully distorted limit surfaces, which are based on all stress invariants and also the second common invariant (Khan, Liu) alone, are received and particularly addressed to orthotropic materials where fourth-order linear transformation tensors are used to achieve extension of the isotropic criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu Al-Rub, R.K., Voyiadjis, G.Z.: On the coupling of anisotropic damage and plasticity models for ductile materials. Int. J. Solids Struct. 40, 2611–2643 (2003)

    Article  Google Scholar 

  2. Balmer, G.G.: Shearing strength of concrete under high triaxial stress—computation of Mohr’s envelope as a curve. Structural Research Laboratory Report SP-23. Denver, Colorado (1949)

    Google Scholar 

  3. Brünig, M., Berger, S., Obrecht, H.: Numerical simulation of the localization behavior of hydrostatic-stress-sensitive metals. Int. J. Mech. Sci. 42, 2147 (2000)

    Article  Google Scholar 

  4. Burzyński, W.: Study on Strength Hypotheses (in Polish). Akademia Nauk Technicznych, Lwów (1928)

    Google Scholar 

  5. Cazacu, O., Barlat, F.: A criterion for description of anisotropy and yield differential effects in pressure-insensitive materials. Int. J. Plast. 20, 2027–2045 (2004)

    Article  Google Scholar 

  6. Cazacu, O., Planckett, B., Barlat, F.: Orthotropic yield criterion for hexagonal close packed metals. Int. J. Plast. 22, 1171–1194 (2006)

    Article  Google Scholar 

  7. Chen, W.F., Han, D.J.: Plasticity for Structural Engineers. Springer, Berlin-Heidelberg (1995)

    Google Scholar 

  8. Coulomb, C.: Essai sur une application des régles maximis et minimis á quelques problémes de statique rélatifs á l’architecture. Mémoires de l’Acad. Roy. des Sci. 7, 43 (1776)

    Google Scholar 

  9. Drucker, D.C., Prager, W.: Solid mechanics and plastic analysis of limit design. Q. Appl. Math. 10, 157–165 (1952)

    Google Scholar 

  10. Egner, H.: On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials. Int. J. Solids Struct. 49, 279–288 (2012)

    Article  Google Scholar 

  11. Ganczarski, A., Lenczowski, J.: On the convexity of the Goldenblatt-Kopnov yield condition. Arch. Mech. 49(3), 461–475 (1997)

    Google Scholar 

  12. Ganczarski, A., Skrzypek, J.: Plasticity of Engineering Materials (in Polish). Wydawnictwo Politechniki Krakowskiej (2009)

    Google Scholar 

  13. Ganczarski, A., Skrzypek, J.: Mechanics of novel materials (in Polish). Wydawnictwo Politechniki Krakowskiej (2013)

    Google Scholar 

  14. Ganczarski, A., Adamski, M.: Tetragonal or hexagonal symmetry in modeling of yield criteria for transversely isotropic materials. Acta Mechanica et Automatica 8(3), 125–128 (2014)

    Google Scholar 

  15. Gao, X., Zhang, T., Zhou, J., Graham, S.M., Hayden, M., Roe, C.: On stress-state dependent plasticity modeling significance at the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. Int. J. Plast. 27, 217–231 (2011)

    Article  Google Scholar 

  16. Goldenblat, I.I., Kopnov V.A.: Obobshchennaya teoriya plasticheskogo techeniya anizotropnyh sred, Sbornik Stroitelnaya Mehanika, pp. 307–319. Stroĭizdat, Moskva (1966)

    Google Scholar 

  17. Iyer, S.K.: Viscoplastic model development to account for strength differential: application to aged Inconel 718 at elevated temperature. Ph.D thesis, The Pennsylvania State University (2000)

    Google Scholar 

  18. Iyer, S.K., Lissenden, C.J.: Multiaxial constitutive model accounting for the strength-differential in Inconel 718. Int. J. Plast. 19, 2055–2081 (2003)

    Article  Google Scholar 

  19. Khan, A.S., Kazmi, R., Farrokh, B.: Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti-6Al-4V titanium alloy over wide ranges of strain rates and temperatures. Int. J. Plast. 23, 931–950 (2007)

    Article  Google Scholar 

  20. Khan, A.S., Liu, H.: Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals. Int. J. Plast. 37, 1–15 (2012)

    Article  Google Scholar 

  21. Khan, A.S., Yu, S., Liu, H.: Deformation induced anisotropic responses of Ti-6Al-4V alloy, part II: a strain rate and temperature dependent anisotropic yield criterion. Int. J. Plast. 38, 14–26 (2012)

    Article  Google Scholar 

  22. Korkolis, Y.P., Kyriakides, S.: Inflation and burst of aluminum tubes, part II: an advanced yield function including deformation-induced anisotropy. Int. J. Plast. 24, 1625–1637 (2008)

    Article  Google Scholar 

  23. Kowalewski, Z.L., Śliwowski, M.: Effect of cyclic loading on the yield surface evolution of 18G2A low-alloy steel. Int. J. Mech. Sci. 39(1), 51–68 (1997)

    Article  Google Scholar 

  24. Kowalsky, U.K., Ahrens, H., Dinkler, D.: Distorted yield surfaces—modeling by higher order anisotropic hardening tensors. Comput. Mater. Sci. 16, 81–88 (1999)

    Article  Google Scholar 

  25. Kupfer, H., Hilsdorf, H.K., Rusch, H.: Behavior of concrete under biaxial stresses. ACI J. 66(8), 656–666 (1969)

    Google Scholar 

  26. Liu, C., Huang, Y., Stout, M.G.: On the asymmetric yield surface of plastically orthotropic materials: a phenomenological study. Acta Mater. 45, 2397–2406 (1997)

    Article  Google Scholar 

  27. Mohr, O.: Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials? Verein Deuts. Ing. Zeit. 44(1524–1530), 1572–1577 (1900)

    Google Scholar 

  28. Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005)

    Google Scholar 

  29. Pȩcherski, R.B., Szeptyński, P., Nowak, M.: An extension of Burzyński hypothesis of material effort accounting for the third invariant of stress tensor. Arch. Metall. Mater. 56, 503–508 (2011)

    Google Scholar 

  30. Ralston, T.D.: Yield and plastic deformation in ice crushing failure. In: ICSI.AIDJEX Symposium on Sea Ice-Processes and Models. Seattle, Washington (1977)

    Google Scholar 

  31. Raniecki, B., Mróz, Z.: Yield or martensitic phase transformation conditions and dissipative functions for isotropic, pressure-insensitive alloys exhibiting SD effect. Acta Mech. 195, 81–102 (2008)

    Article  Google Scholar 

  32. Richart, F.E., Brandtzaeg, A., Brown, R.L.: A study of the failure of concrete under combined compressive stresses. University of Illinois Engineering Experimental Station Bulletin, 185 (1928)

    Google Scholar 

  33. Sayir, M.: Zur Fließbedingung der Plastiztätstheorie. Ingenierarchiv 39, 414–432 (1970)

    Article  Google Scholar 

  34. Szczepiński, W.: On deformation-induced plastic anisotropy of sheet metals. Arch. Mech. 45(1), 3–38 (1993)

    Google Scholar 

  35. Theocaris, P.S.: Weighting failure tensor polynomial criteria for composites. Int. J. Damage Mech. 1, 4–46 (1992)

    Article  Google Scholar 

  36. Tsai, S.T., Wu, E.M.: A general theory of strength for anisotropic materials. Int. J. Numer. Methods Eng. 38, 2083–2088 (1971)

    Google Scholar 

  37. von Mises, R.: Mechanik der festen Körper im plastisch deformablen Zustand, Nachrichten der Geselschaft der Wissenschaften zu Götingen (1913)

    Google Scholar 

  38. von Mises, R.: Mechanik der plastischen Formänderung von Kristallen. ZAMM 8(13), 161–185 (1928)

    Article  Google Scholar 

  39. Yoon, J.W., Lou, Y., Yoon, J., Glazoff, M.V.: Asymmetric yield function based on stress invariants for pressure sensitive metals. Int. J. Plast. (2014) (in press)

    Google Scholar 

  40. Życzkowski, M.: Combined Loadings in the Theory of Plasticity. Polish Scientific Publishers, Warszawa (1981)

    Google Scholar 

  41. Życzkowski, M.: Anisotropic yield conditions. In: Lemaitre, J. (ed.) Handbook of Materials Behavior Models, pp. 155–165. Academic Press, San Diego (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek J. Skrzypek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skrzypek, J.J., Ganczarski, A.W. (2015). Termination of Elastic Range of Pressure Sensitive Materials—Isotropic and Anisotropic Initial Yield/Failure Criteria. In: Skrzypek, J., Ganczarski, A. (eds) Mechanics of Anisotropic Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17160-9_6

Download citation

Publish with us

Policies and ethics