Advertisement

Introduction

  • Alexander Heinecke
  • Wolfgang Eckhardt
  • Martin Horsch
  • Hans-Joachim Bungartz
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

This chapter outlines the work “Supercomputing for Molecular Dynamics Simulations: Handling Multi-Trillion Particles in Nanofluidics” and defines the overall scope of this book. Several flavors of molecular dynamics (MD) simulation are introduced, and we point out the different requirements on MD depending on the field in which MD is applied. Since we focus on the application of MD in the relatively new domain of process engineering, we discuss which ideas from molecular biology and its mature simulation codes can be re-used and which need to be re-thought. This is necessary since both molecular models as well as particle numbers used in computational molecular engineering noticeably vary from molecular biology. Furthermore, we outline the methodology and structure if this book.

Keywords

Molecular dynamics simulation Process engineering 

References

  1. 1.
    B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General method. J. Chem. Phys. 31(2), 459–466 (1959)CrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136A(2A), 405–411 (1964)CrossRefGoogle Scholar
  3. 3.
    D.E. Shaw, R.O. Dror, J.K. Salmon, J. Grossman, K.M. Mackenzie, J.A. Bank, C. Young, M.M. Deneroff, B. Batson, K.J. Bowers et al., Millisecond-scale molecular dynamics simulations on Anton, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–11. (IEEE, 2009)Google Scholar
  4. 4.
    D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3(11), 935–949 (2004)CrossRefGoogle Scholar
  5. 5.
    M.T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L.V. Kalé, R.D. Skeel, K. Schulten, NAMD: a parallel, object-oriented molecular dynamics program. Int. J. High Perform. Comput. Appl. 10(4), 251–268 (1996)CrossRefGoogle Scholar
  6. 6.
    D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005)CrossRefGoogle Scholar
  7. 7.
    B.R. Brooks, C.L. Brooks, A.D. Mackerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch et al., CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)CrossRefGoogle Scholar
  8. 8.
    N. Schmid, A.P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A. Mark, W. Gunsteren, Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40(7), 843–856 (2011)CrossRefGoogle Scholar
  9. 9.
    W.L. Jorgensen, J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110(6), 1657–1666 (1988)CrossRefGoogle Scholar
  10. 10.
    D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)CrossRefGoogle Scholar
  11. 11.
    R. Susukita, T. Ebisuzaki, B.G. Elmegreen, H. Furusawa, K. Kato, A. Kawai, Y. Kobayashi, T. Koishi, G.D. McNiven, T. Narumi, K. Yasuoka, Hardware accelerator for molecular dynamics: MDGRAPE-2. Comput. Phys. Commun. 155(2), 115–131 (2003)CrossRefGoogle Scholar
  12. 12.
    D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S. C. Wang, Anton, a special-purpose machine for molecular dynamics simulation, in ACM SIGARCH Computer Architecture News, vol. 35, pp. 1–12. (ACM, 2007)Google Scholar
  13. 13.
    F. Streitz, J. Gosli, M. Patel, B. Chan, R. Yates, B. de Supinski, J. Sexton, and J. Gunnels. 100+ TFLOP solidification simulations on BlueGene/L, in Proceedings of IEEE/ACM Supercomputing’05 (2005)Google Scholar
  14. 14.
    E. Hendriks, G.M. Kontogeorgis, R. Dohrn, J.-C. de Hemptinne, I.G. Economou, L.F. Zilnik, V. Vesovic, Industrial requirements for thermodynamics and transport properties. Ind. Eng. Chem. Res. 49(22), 11131–11141 (2010)CrossRefGoogle Scholar
  15. 15.
    O. Konrad, Molekulardynamische Simulationen zur Solvation von Methan in Wasser. Ph.D. thesis, Universität Hamburg, 2008Google Scholar
  16. 16.
    M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids. Oxford University Press, Oxford (1989)Google Scholar
  17. 17.
    P. Ungerer, C. Nieto Draghi, B. Rousseau, G. Ahunbay, V. Lachet, Molecular simulation of the thermophysical properties of fluids: From understanding toward quantitative predictions. J. Mol. Liq. 134, 71–89 (2007)CrossRefGoogle Scholar
  18. 18.
    R. Lustig, Direct molecular NVT simulation of the isobaric heat capacity, speed of sound, and Joule-Thomson coefficient. Mol. Simul. 37(6), 457–465 (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    F. Rösch, H.-R. Trebin, Crack front propagation by kink formation. Europhys. Lett. 87, 66004 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Deublein, B. Eckl, J. Stoll, S.V. Lishchuk, G. Guevara-Carrion, C.W. Glass, T. Merker, M. Bernreuther, H. Hasse, J. Vrabec, ms2: a molecular simulation tool for thermodynamic properties. Comput. Phys. Commun. 182(11), 2350–2367 (2011)CrossRefGoogle Scholar
  21. 21.
    K. Binder, Applications of Monte Carlo methods to statistical physics. Rep. Prog. Phys. 60(5), 487–559 (1997)CrossRefGoogle Scholar
  22. 22.
    B. Eckl, J. Vrabec, H. Hasse, Set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data. J. Phys. Chem. B 112(40), 12710–12721 (2008)CrossRefGoogle Scholar
  23. 23.
    G. Guevara Carrión, H. Hasse, and J. Vrabec, Thermodynamic properties for applications in chemical industry via classical force fields, in Multiscale Molecular Methods in Applied Chemistry, number 307 in Topics in Current Chemistry (Springer, Heidelberg, 2012), pp. 201–249Google Scholar
  24. 24.
    B. Eckl, J. Vrabec, H. Hasse, On the application of force fields for predicting a wide variety of properties: ethylene oxide as an example. Fluid Phase Equilibria 274(1–2), 16–26 (2008)CrossRefGoogle Scholar
  25. 25.
    M.G. Martin, J.I. Siepmann, Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J. Phys. Chem. B 103(21), 4508–4517 (1999)CrossRefGoogle Scholar
  26. 26.
    M. Horsch, J. Vrabec, M. Bernreuther, H. Hasse, Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation, in Proceedings of the 6th International Symposium on Turbulence, Heat and Mass Transfer, ed. by K. Hanjalić (Begell House, New York, 2009), pp. 89–92Google Scholar
  27. 27.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRefGoogle Scholar
  28. 28.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRefzbMATHGoogle Scholar
  29. 29.
    T.C. Germann, K. Kadau, Trillion-atom molecular dynamics becomes a reality. Int. J. Mod. Phys. C 19(09), 1315–1319 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    R. Hockney, S. Goel, J. Eastwood, Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14(2), 148–158 (1974)CrossRefGoogle Scholar
  31. 31.
    W. Eckhardt, Efficient HPC implementations for large-scale molecular simulation in process engineering. Ph.D. thesis, Institut für Informatik, Technische Universität München, München, 2014. Dissertation available from publishing house Dr. Hut under ISBN: 978-3-8439-1746-9Google Scholar
  32. 32.
    A. Heinecke, Boosting scientific computing applications through leveraging data parallel architectures. Ph.D. thesis, Institut für Informatik, Technische Universität München, 2014. Dissertation available from publishing house Dr. Hut under ISBN: 978-3-8439-1408-6Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Alexander Heinecke
    • 1
  • Wolfgang Eckhardt
    • 2
  • Martin Horsch
    • 3
  • Hans-Joachim Bungartz
    • 2
  1. 1.Intel CorporationSanta ClaraUSA
  2. 2.Technische Universität MünchenGarchingGermany
  3. 3.University of KaiserslauternKaiserslauternGermany

Personalised recommendations