Skip to main content

Finding Connected Dense \(k\)-Subgraphs

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9076))

Abstract

Given a connected graph \(G\) on \(n\) vertices and a positive integer \(k\le n\), a subgraph of \(G\) on \(k\) vertices is called a \(k\)-subgraph in \(G\). We design combinatorial approximation algorithms for finding a connected \(k\)-subgraph in \(G\) such that its density is at least a factor \(\varOmega (\max \{n^{-2/5},k^2/n^2\})\) of the density of the densest \(k\)-subgraph in \(G\) (which is not necessarily connected). These particularly provide the first non-trivial approximations for the densest connected \(k\)-subgraph problem on general graphs.

Research supported in part by by NNSF of China under Grant No. 11222109, 11021161 and 10928102, by 973 Project of China under Grant No. 2011CB80800, and by CAS Program for Cross & Cooperative Team of Science & Technology Innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 25–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 284–293 (1995)

    Google Scholar 

  3. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. J. Algorithms 34(2), 203–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities: an \(O(n^{1/4})\) approximation for densest \(k\)-subgraph. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, pp. 201–210 (2010)

    Google Scholar 

  5. Chen, Danny Z., Fleischer, Rudolf, Li, Jian: Densest k-subgraph approximation on intersection graphs. In: Jansen, Klaus, Solis-Oba, Roberto (eds.) WAOA 2010. LNCS, vol. 6534, pp. 83–93. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Chen, X., Hu, X., Wang, C.: Finding connected dense \(k\)-subgraphs. CoRR abs/1501.07348 (2015)

    Google Scholar 

  7. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Appl. Math. 9(1), 27–39 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.i.: Algorithmic graph minor theory: decomposition, approximation, and coloring. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 637–646 (2005)

    Google Scholar 

  9. Feige, U.: Relations between average case complexity and approximation complexity. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 534–543 (2002)

    Google Scholar 

  10. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feige, U., Peleg, D., Kortsarz, G.: The dense \(k\)-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldberg, A.V.: Finding a Maximum Density Subgraph. University of California Berkeley, CA (1984)

    Google Scholar 

  13. Han, Q., Ye, Y., Zhang, J.: An improved rounding method and semidefinite programming relaxation for graph partition. Math. Program. 92(3), 509–535 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Khot, S.: Ruling out ptas for graph min-bisection, dense \(k\)-subgraph, and bipartite clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Kortsarz, G., Peleg, D.: On choosing a dense subgraph. In: Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, pp. 692–701 (1993)

    Google Scholar 

  18. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Dover Publications, New York (1976)

    MATH  Google Scholar 

  19. Liazi, M., Milis, I., Zissimopoulos, V.: Polynomial variants of the densest/heaviest \(k\)-subgraph problem. In: Proceedings of the 20th British Combinatorial Conference, Durham (2005)

    Google Scholar 

  20. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, pp. 755–764 (2010)

    Google Scholar 

  21. Srivastav, A., Wolf, K.: Finding dense subgraphs with semidefinite programming. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 181–191. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xujin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, X., Hu, X., Wang, C. (2015). Finding Connected Dense \(k\)-Subgraphs. In: Jain, R., Jain, S., Stephan, F. (eds) Theory and Applications of Models of Computation. TAMC 2015. Lecture Notes in Computer Science(), vol 9076. Springer, Cham. https://doi.org/10.1007/978-3-319-17142-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17142-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17141-8

  • Online ISBN: 978-3-319-17142-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics