Skip to main content

A Design-Led, Materials Based Approach to Human Centered Applications Using Modified Dielectric Electroactive Polymer Sensors

  • Conference paper
  • First Online:
Sensor Systems and Software (S-CUBE 2014)

Abstract

This paper describes a design-led exploratory scoping study into the potential use of an industry standard dielectric electroactive polymer (DEAP) sensor for applications in assistive healthcare. The focus of this activity was to explore the physical format and integration of soft materials and sensor combinations with properties that afford an opportunity for accurate and unobtrusive real time body mapping and monitoring. The work involved a series of practical investigations into the capacitance changes in the sensor brought on by deformation through different ways of stretching. The dielectric sensors were selected as a direct mapping tool against the body based on the similarity of the stretch qualities of both the sensor and human skin and muscle resulting in a prototype vest for real time breathing monitoring through sensing thoracic movement. This involved modification of the standard sensors and handcrafting bespoke sensors to map critically relevant areas of the thorax.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oliver, R., Toomey, A.: A physical basis for ambient intelligence. In: Gabrielli, S., Elias, D., Kahol, K. (eds.) AmBI-SYS 2011. LNICST, vol. 70, pp. 1–11. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Malins, J.P., et al.: Future Textile Visions: Smart Textiles for Health and Wellness. Robert Gordon University, Aberdeen (2012)

    Google Scholar 

  3. Ochoa, M., Rahim, R., Babak, Z.: Flexible Sensors for Chronic Wound Management. 1–1 (2013)

    Google Scholar 

  4. Rakibet, O.O., et al.: Epidermal passive strain gauge technologies for assisted technologies. IEEE Antennas Wirel. Propag. Lett. 13(1), 814–817 (2014)

    Article  Google Scholar 

  5. Kumar, P.S., et al.: Nanocomposite electrodes for smartphone enabled healthcare garments: e-bra and smart vest. In: International Society for Optics and Photonics SPIE Nanosystems in Engineering + Medicine (2012)

    Google Scholar 

  6. Mattman, C., Amft, O., Harms, H., Troster, G.: Recognizing upper body postures using textile strain sensors. In: 11th IEEE International Symposium Wearable Computers (2007)

    Google Scholar 

  7. Huang, K., et al.: A technology probe of wearable in-home computer-assisted physical therapy. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems. ACM (2014)

    Google Scholar 

  8. Lanata, A., Scilingo, E.P.: Smart textiles: technology and wireless system network applications. In: Autonomous Sensor Networks. Springer, Heidelberg, pp. 127–158 (2013)

    Google Scholar 

  9. Mazilu, S., et al.: GaitAssist: a wearable assistant for gait training and rehabilitation in Parkinson’s disease. In: 2014 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops). IEEE (2014)

    Google Scholar 

  10. Stoppa, M., Chiolerio, A.: Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014)

    Article  Google Scholar 

  11. Komuro, N., et al.: Inkjet printed (bio) chemical sensing devices. Anal. Bioanal. Chem. 405(17), 5785–5805 (2013)

    Article  Google Scholar 

  12. Tongrod, N., et al.: Design and development of data glove based on printed polymeric sensors and zigbee networks for human-computer interface. Disabil. Rehabil. Assistive Technol. 8(2), 115–120 (2013)

    Article  Google Scholar 

  13. Rogers, J.A., et al.: Mater. and mechanics for stretchable electronics. Science 327, 1603 (2010). AAAS

    Article  Google Scholar 

  14. Lai, Y.-C., et al.: Stretchable organic memory: toward learnable and digitized stretchable electronic applications. NPG Asia Materials 6(2), e87 (2014)

    Article  Google Scholar 

  15. Yu, Y., Yan, C., Zheng, Z.: Polymer assisted metal deposition (PAMD): a full solution strategy for flexible, stretchable, compressible, and wearable metal conductors. Adv. Mater. 26, 5508–5516 (2014)

    Article  Google Scholar 

  16. Bar-Cohen, Y., Zhang, Q.: Electroactive polymer actuators and sensors. MRS Bull. 33(03), 173–181 (2008)

    Article  Google Scholar 

  17. Ozsecen, M.Y., Mavroidis, C.: Nonlinear force control of dielectric electroactive polymer actuators. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics (2010)

    Google Scholar 

  18. Carpi, F., De Rossi, D.: Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation. Mater. Sci. Eng., C 24(4), 555–562 (2004)

    Article  Google Scholar 

  19. De Rossi, D., et al.: Electroactive fabrics and wearable biomonitoring devices. AUTEX Res. J. 3(4), 180–185 (2003)

    Google Scholar 

  20. Pelrine, R.E., Kornbluh, R.D., Joseph, J.P.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A: Phys. 64(1), 77–85 (1998)

    Article  Google Scholar 

  21. Danfoss Polypower DEAP Material. http://www.polypower.com

  22. Moessinger, H.: Demonstrating the Application of Dielectric Polymer Actuators for Tactile Feedback in a Mobile Consumer Device. Philips Research, Eindhoven (2010)

    Google Scholar 

  23. O’Connor, K.: Lycra: How A Fiber Shaped America. Routledge, New York (2011)

    Google Scholar 

  24. Kuchler, S.: Technological materiality: beyond the dualist paradigm. Theory Cult. Soc. 25, 101–120 (2008)

    Article  Google Scholar 

  25. Wiberg, M., Robles, E.: Computational compositions: aesthetics materials and interaction design. Int. J. Des. 4(2), 67 (2010)

    Google Scholar 

  26. Coelho, M., et al.: Programming reality: from transitive materials to organic user interaces. In: CHI Extended Abstracts on Human Factors in Computing Systems, pp. 4759–4762. ACM press (2009)

    Google Scholar 

  27. Toomey, A., Oliver, R., Tillotson, J.: Bioengineered textiles and nonwovens-the convergence of bio-miniturisation and electroactive conductive polymers for assistive healthcare, portable power and design-led wearable technology. In: WACBE-TBIS Special Symposium (2010)

    Google Scholar 

  28. Sekitani, T., Someya, T.: Stretchable large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010). Wiley

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Toomey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Toomey, A., Oliver, R., O’Connor, N., Stevenson-Keating, P. (2015). A Design-Led, Materials Based Approach to Human Centered Applications Using Modified Dielectric Electroactive Polymer Sensors. In: Kanjo, E., Trossen, D. (eds) Sensor Systems and Software. S-CUBE 2014. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-319-17136-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17136-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17135-7

  • Online ISBN: 978-3-319-17136-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics