Skip to main content

New Developments in Murine Imaging for Assessing Photoreceptor Degeneration In Vivo

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Abstract

Optical Coherence Tomography (OCT) is a powerful clinical tool that measures near infrared light backscattered from the eye and other tissues. OCT is used for assessing changes in retinal structure, including layer thicknesses, detachments and the presence of drusen in patient populations. Our custom-built OCT system for the mouse eye quantitatively images all layers of the neural retinal, the RPE, Bruchs’ membrane and the choroid. Longitudinal assessment of the same retinal region reveals that the relative intensities of retinal layers are highly stable in healthy tissue, but show progressive increases in intensity in a model of retinal degeneration. The observed changes in OCT signal have been correlated with ultrastructural disruptions that were most dramatic in the inner segments and nuclei of the rods. These early changes in photoreceptor structure coincided with activation of retinal microglia, which migrated vertically from the inner to the outer retina to phagocytose photoreceptor cell bodies (Levine et al., Vis Res 102:71–79, 2014). We conclude that quantitative analysis of OCT light scattering signals may be a useful tool for early detection and subcellular localization of cell stress prior to cell death, and for assessing the progression of degenerative disease over time. Future efforts to develop sensitive approaches for monitoring microglial dynamics in vivo may likewise elucidate earlier signs of cellular stress during retinal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt C, Runnels JM, Mortensen LJ et al (2014) In vivo imaging of microglia turnover in the mouse retina after ionizing radiation and dexamethasone treatment. Invest Ophthalmol Vis Sci 55:5314–5319

    Article  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong J-S (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Simon MI, Matthes MT et al (1999) Increased susceptibility to light damage in an arrestin knockout mouse model of Oguchi disease (stationary night blindness). Invest Ophthalmol Vis Sci 40:2978–2982

    CAS  PubMed  Google Scholar 

  • Cideciyan AV, Jacobson SG, Aleman TS et al (2005) In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa. Proc Natl Acad Sci U S A 102:5233–5238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combadière C, Feumi C, Raoul W et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117:2920–2928

    Article  PubMed  PubMed Central  Google Scholar 

  • Cucchiarini M, Ren X, Perides G et al (2003) Selective gene expression in brain microglia mediated via adeno-associated virus type 2 and type 5 vectors. Gene Ther 10:657–667

    Article  CAS  PubMed  Google Scholar 

  • Dalkara D, Byrne LC, Klimczak RR et al (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra76

    PubMed  Google Scholar 

  • Jackson H, Muhammad O, Daneshvar H et al (2007) Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 60:524–530

    Article  PubMed  Google Scholar 

  • Langmann T (2007) Microglia activation in retinal degeneration. J Leukoc Biol 81:1345–1351

    Article  CAS  PubMed  Google Scholar 

  • Levine ES, Zam A, Zhang P et al (2014) Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1. Vis Res 102:71–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang KJ, Lee JE, Wang YD et al (2009) Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest Ophthalmol Vis Sci 50:4444–4451

    Article  PubMed  PubMed Central  Google Scholar 

  • Minami SS, Sun B, Popat K et al (2012) Selective targeting of microglia by quantum dots. J Neuroinflammation 9:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiguchi KM, Sandberg MA, Kooijman AC et al (2004) Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation. Nature 427:75–78

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg AL, Chherti RK, Cooper JM et al (2013) Motility-, autocorrelation-, and polarized-sensitive optical coherence tomography discriminates cells and gold nanorods within 3D tissue cultures. Opt Lett 38:2923–2926

    Article  PubMed  PubMed Central  Google Scholar 

  • Paskowitz DM, LaVail MM, Duncan JL (2006) Light and inherited retinal degeneration. Br J Ophthalmol 90:1060–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streit WJ, Mrak RE, Griffin WST (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzekov R, Stein L, Kaushal S (2011) Protein misfolding and retinal degeneration. Cold Spring Harb Perspect Biol 3:a007492

    Article  PubMed  PubMed Central  Google Scholar 

  • Walter L, Neumann H (2009) Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 31:513–525

    Article  PubMed  Google Scholar 

  • Wojtkowski M (2010) High-speed optical coherence tomography: basics and applications. Appl Opt 49:D30–D61

    Article  PubMed  Google Scholar 

  • Xu J, Dodd RL, Makino CL et al (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389:505–509

    Article  CAS  PubMed  Google Scholar 

  • Zam A, Dsouza R, Subhash HM et al (2013) Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting. J Biophotonics 6:663–667

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie E. Burns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Burns, M. et al. (2016). New Developments in Murine Imaging for Assessing Photoreceptor Degeneration In Vivo . In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_36

Download citation

Publish with us

Policies and ethics