Skip to main content

A Mini-review: Animal Models of GUCY2D Leber Congenital Amaurosis (LCA1)

  • Conference paper
  • First Online:
Book cover Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 854))

Abstract

GUCY2D encodes retinal guanylate cylase-1 (retGC1), a protein that plays a pivotal role in the recovery phase of phototransduction. Mutations in GUCY2D are associated with a leading cause of recessive Leber congenital amaurosis (LCA1). Patients present within the first year of life with aberrant or unrecordable electroretinogram (ERG), nystagmus and a relatively normal fundus. Aside from abnormalities in the outer segments of foveal cones and, in some patients, foveal cone loss, LCA1 patients retain normal retinal laminar architecture suggesting they may be good candidates for gene replacement therapy. Several animal models of LCA1, both naturally occurring and engineered, have been characterized and provide valuable tools for translational studies. This mini-review will summarize the phenotypes of these models and describe how each has been instrumental in proof of concept studies to develop a gene replacement therapy for GUCY2D-LCA1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arshavsky VY, Burns ME (2012) Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 287:1620–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baehr W, Karan S, Maeda T et al (2007) The function of guanylate cyclase 1 (GC1) and guanylate cyclase 2 (GC2) in rod and cone photoreceptors. J Biol Chem 282:8837–8847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boye SE, Boye SL, Pang J et al (2010) Functional and behavioral restoration of vision by gene therapy in the guanylate cyclase-1 (GC1) knockout mouse. PLoS One 5:e11306

    Article  PubMed  PubMed Central  Google Scholar 

  • Boye SL, Conlon T, Erger K et al (2011) Long-term preservation of cone photoreceptors and restoration of cone function by gene therapy in the guanylate cyclase-1 knockout (GC1KO) mouse. Invest Ophthalmol Vis Sci 52:7098–7108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boye SL, Peshenko IV, Huang WC et al (2013) AAV-mediated gene therapy in the guanylate cyclase (RetGC1/RetGC2) double knockout mouse model of Leber congenital amaurosis. Hum Gene Ther 24:189–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng KM, Shoffner RN, Gelatt KN, Gum GG, Otis JS, Bitgood JJ (1980) An autosomal recessive blind mutant in the chicken. Poult Sci 59:2179–2181

    Article  CAS  PubMed  Google Scholar 

  • Cideciyan AV, Aleman TS, Boye SL et al (2008) Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 105:15112–15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman JE, Semple-Rowland SL (2005) GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells. Invest Ophthalmol Vis Sci 46:12–16

    Article  PubMed  Google Scholar 

  • Coleman JE, Zhang Y, Brown GA et al (2004) Cone cell survival and downregulation of GCAP1 protein in the retinas of GC1 knockout mice. Invest Ophthalmol Vis Sci 45:3397–3403

    Article  PubMed  Google Scholar 

  • Dizhoor AM, Lowe DG, Olshevskaya EV et al (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Dizhoor AM, Olshevskaya EV, Henzel WJ et al (1995) Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270:25200–25206

    Article  CAS  PubMed  Google Scholar 

  • Haire SE, Pang J, Boye SL et al (2006) Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1. Invest Ophthalmol Vis Sci 47:3745–3753

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobson SG, Cideciyan AV, Peshenko IV et al (2013) Determining consequences of retinal membrane guanylyl cyclase (RetGC1) deficiency in human Leber congenital amaurosis en route to therapy: residual cone-photoreceptor vision correlates with biochemical properties of the mutants. Hum Mol Genet 22:168–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karan S, Frederick JM, Baehr W (2010) Novel functions of photoreceptor guanylate cyclases revealed by targeted deletion. Mol Cell Biochem 334:141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Seno K, Nishizawa Y et al (1994) Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 59:761–768

    Article  CAS  PubMed  Google Scholar 

  • Mihelec M, Pearson RA, Robbie SJ et al (2011) Long-term preservation of cones and improvement in visual function following gene therapy in a mouse model of leber congenital amaurosis caused by guanylate cyclase-1 deficiency. Hum Gene Ther 22:1179–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milam AH, Barakat MR, Gupta N et al (2003) Clinicopathologic effects of mutant GUCY2D in Leber congenital amaurosis. Ophthalmology 110:549–558

    Article  PubMed  Google Scholar 

  • Olshevskaya EV, Calvert PD, Woodruff ML et al (2004) The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca2+ and causes photoreceptor degeneration in transgenic mice. J Neurosci 24:6078–6085

    Article  CAS  PubMed  Google Scholar 

  • Pasadhika S, Fishman GA, Stone EM et al (2010) Differential macular morphology in patients with RPE65-, CEP290-, GUCY2D-, and AIPL1-related Leber congenital amaurosis. Invest Ophthalmol Vis Sci 51:2608–2614

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrault I, Rozet JM, Gerber S et al (1999) Leber congenital amaurosis. Mol Genet Metab 68:200–208

    Article  CAS  PubMed  Google Scholar 

  • Perrault I, Rozet JM, Gerber S et al (2000) Spectrum of retGC1 mutations in Leber’s congenital amaurosis. Eur J Hum Genet 8:578–582

    Article  CAS  PubMed  Google Scholar 

  • Peshenko IV, Olshevskaya EV, Savchenko AB et al (2011) Enzymatic properties and regulation of the native isozymes of retinal membrane guanylyl cyclase (RetGC) from mouse photoreceptors. Biochemistry 50:5590–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porto FB, Perrault I, Hicks D et al (2003) Prenatal human ocular degeneration occurs in Leber’s congenital amaurosis (LCA1 and 2). Adv Exp Med Biol 533:59–68

    Article  CAS  PubMed  Google Scholar 

  • Pugh EN Jr, Duda T, Sitaramayya A et al (1997) Photoreceptor guanylate cyclases: a review. Biosci Rep 17:429–473

    Article  CAS  PubMed  Google Scholar 

  • Semple-Rowland SL, Lee NR, Van Hooser JP et al (1998) A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype. Proc Natl Acad Sci U S A 95:1271–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonelli F, Ziviello C, Testa F et al (2007) Clinical and molecular genetics of Leber’s congenital amaurosis: a multicenter study of Italian patients. Invest Ophthalmol Vis Sci 48:4284–4290

    Article  PubMed  Google Scholar 

  • Ulshafer RJ, Allen CB (1985) Ultrastructural changes in the retinal pigment epithelium of congenitally blind chickens. Curr Eye Res 4:1009–1021

    Article  CAS  PubMed  Google Scholar 

  • Williams ML, Coleman JE, Haire SE et al (2006) Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med 3:e201

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang RB, Garbers DL (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272:13738–13742

    Article  CAS  PubMed  Google Scholar 

  • Yang RB, Robinson SW, Xiong WH et al (1999) Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 19:5889–5897

    CAS  PubMed  Google Scholar 

  • Yang GS, Schmidt M, Yan Z et al (2002) Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol 76:7651–7660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Sue Semple Rowland, Ph.D., Wolfgang Baehr, Ph.D., Samuel G. Jacobson M.D., Ph.D., William W. Hauswirth, Ph.D., Alex Dizhoor, Ph.D., and Sanford L. Boye for their contributions to this research over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon E. Boye PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Boye, S. (2016). A Mini-review: Animal Models of GUCY2D Leber Congenital Amaurosis (LCA1). In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_34

Download citation

Publish with us

Policies and ethics