Skip to main content

Methods of Stochastic Mechanics for Characterization of Deformation in Randomly Reinforced Composite Materials

  • Chapter
  • First Online:
Mechanics of Advanced Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter reveals certain aspects of theoretical statistical approach to studying mechanical behavior of randomly reinforced composite materials, particularly focusing on microstructural characterization and methods of description of stress and strain fields in components of material. Mechanical properties of microstructural components are defined with conventional phenomenological equations and criteria while the effective properties of composite and characteristics of microscopic deformation fields are computed using the solutions of stochastic boundary value problems (SBVPs). Microstructural description is based on a concept of the representative volume elements (RVE) and is implemented with the correlation functions of the second and higher orders. Statistical moments of microstructural fields are used as the characteristic of deformation and fracture processes and analytically connect the microstructural correlation functions with the SBVP solution. Using the Green’s functions these solutions have been obtained in elastic and elastoplastic formulations. The numerical calculations for a case study of porous composites with different microstructural properties were obtained for various loading conditions. Some milestones of emerging and development of the described methods are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torquato, S.: Random Heterogenous Materials, Microstructure and Macroscopic Properties. Springer, New York (2001)

    Google Scholar 

  2. Buryachenko, V.: Micromechanics of Heterogeneous Materials. Springer, New York (2007)

    Book  MATH  Google Scholar 

  3. Kaminski, M.M.: Computational Mechanics of Composite Materials. Springer, New York (2005)

    Google Scholar 

  4. Kanouté, P., Boso, D.P., Chaboche, J.L., Schrefler, B.A.: Multiscale methods for composites: a review. Arch. Comput. Methods. Eng. 16, 31–75 (2009)

    Article  MATH  Google Scholar 

  5. Silberschmidt, V.V.: Account for random microstructure in multiscale models. In: Kwon, Y.W., Allen, D.H., Talreja, R. (eds.) Multiscale Modeling and Simulation of Composite Materials and Structures, pp. 1–35. Springer, New York (2008)

    Chapter  Google Scholar 

  6. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  7. Drugan, W.J., Willis, J.R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44, 497–524 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40, 3647–3679 (2003)

    Article  MATH  Google Scholar 

  9. Vanin, G.A.: Micromechanics of Composite Materials. Naukova dumka, Kiev (in Russian) (1985)

    Google Scholar 

  10. Volkov, S.D., Stavrov, V.P.: Statistical Mechanics of Composite Materials. Izd. Bel. Gos. Univ., Minsk (in Russian) (1978)

    Google Scholar 

  11. Lomakin, V.A.: Statistical Problems of the Mechanics of Solid Deformable Bodies. Nauka, Moscow (in Russian) (1970)

    Google Scholar 

  12. Sokolkin, Y.V., Tashkinov, A.A.: Deformation and Fracture Mechanics of Structurally Inhomogeneous Bodies. Nauka, Moscow (in Russian) (1984)

    Google Scholar 

  13. Shermergor, T.D.: The Theory of Elasticity of Microinhomogeneous Media. Nauka, Moscow (in Russian) (1977)

    Google Scholar 

  14. Beran, M.J.: Statistical Continuum Theories. Wiley Interscience Publication, New-York (1968)

    MATH  Google Scholar 

  15. Lifshitz, I.M., Rosenzweig, L.N.: On the theory of the elastic properties of polycrystals. J. Exp. Theor. Phys. 16, 967–980 (1946). (in Russian)

    Google Scholar 

  16. Lifshitz, I.M., Rosenzweig, L.N.: Erratum to On the theory of the elastic properties of polycrystals. J. Exp. Theor. Phys. 21, 1184 (1951) (in Russian)

    Google Scholar 

  17. Bolotin, V.V., Moskalenko, V.N.: Determination of the elastic constants of a microinhomogeneous medium. Zh Priklad Mekh Tekhn Fiz (J. Appl. Mech. Tech. Phys.) 1, 66–72 (1968). (in Russian)

    Google Scholar 

  18. Lomakin, V.A., Sheinin, V.I.: Stress concentration at the boundary of a randomly inhomogeneous elastic body. Mekh Tverdogo Tela 9(2), 65–70 (Engl Transl. Mech. Solids 9(2), 58–63) (1974) (in Russian)

    Google Scholar 

  19. Stavrov, V.P., Dolgih, V.J., Volkov, S.D.: On the elastic constants of randomly reinforced plastics. Mech. Polym. 2, 259–265 (1967). (in Russian)

    Google Scholar 

  20. Maslov, B.P.: Effective constants of the theory of geometrically nonlinear solids. Prikl Mekh. 17(5):45–50 (Engl Transl. Soviet Appl. Mech. 17, 439–444) (1981) (in Russian)

    Google Scholar 

  21. Savin, G.N., Khoroshun, L.P.: Problem of elastic constants of randomly reinforced materials. Mechanics of Composite Media and Related Problems of Analysis. Nauka, Moscow, pp. 437–444 (1972) (in Russian)

    Google Scholar 

  22. Khoroshun, L.P.: Random functions theory in problems on the macroscopic characteristics of microinhomogeneous media. Priklad Mekh. 14(2), 3–17 (Engl Transl. Soviet Appl. Mech. 14, 113–124) (1978) (in Russian)

    Google Scholar 

  23. Anoshkin, A.N., Sokolkin, Y.V., Tashkinov, A.A.: Microstress fields and the mechanical properties of disordered fiber composites. Mech. Compos. Mater. 26(5), 628–633 (1990)

    Article  Google Scholar 

  24. Wildemann, V.E., Sokolkin, Y.V., Tashkinov, A.A.: (1997) Mechanics of inelastic deformation and fracture of composite materials. Nauka, Moscow (in Russian)

    Google Scholar 

  25. Pankov, A.A.: Statistical mechanics of piezocomposites. Perm Gos. Tehn. University Press, Perm (2009) (in Russian)

    Google Scholar 

  26. Kroner, E.: Elastic moduli of perfectly disordered composite materials. J. Mech. Phys. Solids 15(2), 137–155 (1967)

    MathSciNet  Google Scholar 

  27. Kroner, E.: Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids 25(2), 137–155 (1977)

    Article  Google Scholar 

  28. Sokolkin, Y.V., Volkova, T.A.: Multipoint moment functions of the stress and strain distributions in stochastic composites. Mech. Compos. Mater. 27(4), 429–435 (1991)

    Google Scholar 

  29. Tashkinov, M.A., Vildeman, V.E., Mikhailova, N.V.: Method of successive approximations in a stochastic boundary-value problem in the elasticity theory of structurally heterogeneous media. Compos.: Mech. Comput. Appl. Int. J 2(1), 21–37 (2011)

    Google Scholar 

  30. Tashkinov, M.A., Wildemann, V.E., Mikhailova, N.V.: Method of successive approximations in stochastic elastic boundary value problem for structurally heterogenous materials. Comput. Mater. Sci. 52, 101–106 (2012)

    Article  Google Scholar 

  31. Tashkinov, M.: Statistical characteristics of structural stochastic stress and strain fields in polydisperse heterogeneous solid media. Comput. Mater. Sci. 94, 44–50 (2014)

    Article  Google Scholar 

  32. Volkov SS (1987) The existence and uniqueness of solutions of stochastic problems of elasticity theory. Calculation and optimization of engineering products. Sverdlovsk 17–19 (in Russian)

    Google Scholar 

  33. Jiao, Y., Stillinger, F.H., Torquato, S.: Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. Phys. Rev. 77(3), 031135 (2008)

    MathSciNet  Google Scholar 

  34. Korn, G., Korn, T.: Mathematical Handbook for Scientists and Engineers. Nauka, Moscow (in Russian) (1968)

    Google Scholar 

  35. Rasool, A., Böhm, H.J.: Effects of particle shape on the macroscopic and microscopic linear behaviors of particle reinforced composites. Int. J. Eng. Sci. 58, 21–34 (2012)

    Article  Google Scholar 

  36. Liu, K.C., Ghoshal, A.: Validity of random microstructures simulation in fiber-reinforced composite materials. Compos. B 57, 56–70 (2014)

    Article  Google Scholar 

  37. Matveeva, A., Pyrlin, S.V., Ramos, M.M.D., et al.: Influence of waviness and curliness of fibres on mechanical properties of composites. Comput. Mater. Sci. 87, 1–11 (2014)

    Article  Google Scholar 

  38. Mishnaevsky Jr, L., Derrien, K., Baptiste, D.: Effect of microstructure of particle reinforced composites on the damage evolution: probabilistic and numerical analysis. Compos. Sci. Technol. 64, 1805–1818 (2004)

    Article  Google Scholar 

  39. Yu Liu, M., Greene, Steven, Chen, Wei, et al.: Computational microstructure characterization and reconstruction for stochastic multiscale material design. Comput. Aided Des. 45, 65–76 (2013)

    Article  Google Scholar 

  40. Khokhar, Z.R., Ashcroft, I.A., Silberschmidt, V.V.: Simulations of delamination in CFRP laminates: effect of microstructural randomness. Comput. Mater. Sci. 46, 607–613 (2009)

    Article  Google Scholar 

  41. Yu, M., Zhu, P., Ma, Y.: Effects of particle clustering on the tensile properties and failure mechanisms of hollow spheres filled syntactic foams: a numerical investigation by microstructure based modeling. Mater. Des. 47, 80–89 (2013)

    Article  Google Scholar 

  42. Melro, A.R., Camanho, P.P., Pinho, S.T.: Influence of geometrical parameters on the elastic response of unidirectional composite materials. Compos. Struct. 94, 3223–3231 (2012)

    Article  Google Scholar 

  43. Baniassadi, M., Mortazavi, B., Amani Hamedani, H., et al.: Three-dimensional reconstruction and homogenization of heterogeneous materials using statistical correlation functions and FEM. Comput. Mater. Sci. 51, 372–379 (2012)

    Article  Google Scholar 

  44. Sheidaei, A., Baniassadi, M., Banu, M., et al.: 3-D microstructure reconstruction of polymer nano-composite using FIB–SEM and statistical correlation function. Compos. Sci. Technol. 80, 47–54 (2013)

    Article  Google Scholar 

  45. Baniassadi, M., Ahzi, S., Garmestani, H., et al.: New approximate solution for N-point correlation functions for heterogeneous materials. J. Mech. Phys. Solids 60, 104–119 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Ghazavizadeh, A., Soltani, N., Baniassadi, M., et al.: Composition of two-point correlation functions of subcomposites in heterogeneous materials. Mech. Mater. 51, 88–96 (2012)

    Article  Google Scholar 

  47. Feng, J.W., Li, C.F., Cen, S., Owen, D.R.J.: Statistical reconstruction of two-phase random media. Comput. Struct. 137, 78–92 (2014)

    Article  Google Scholar 

  48. Liu, K.C., Ghoshal, A.: Inherent symmetry and microstructure ambiguity in micromechanics. Compos. Struct. 108, 311–318 (2014)

    Article  Google Scholar 

  49. S. Torquato (1998) Morphology and effective properties of disordered heterogeneous media. Int. J. Solids Struct. 35(19): 2385–2406

    Google Scholar 

  50. Rintoul, M.D., Torquato, S.: Reconstruction of the structure of dispersions. J. Colloid Interface Sci. 186, 467–476 (1997)

    Article  Google Scholar 

  51. Sheehan, N., Torquato, S.: Generating microstructures with specified correlation functions. J. Appl. Phys. 89, 53–61 (2001)

    Article  Google Scholar 

  52. Jiao, Y., Stillinger, F.H., Torquato, S.: Modeling heterogeneous materials via two-point correlation functions: basic principles. Phys. Rev. 76, 031110 (2007)

    MathSciNet  Google Scholar 

  53. Binder, K., Heerman, D.W.: Monte Carlo Simulation in Statistical Physics: An Introduction. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  54. Torquato, S.: Modeling of physical properties of composite materials. Int. J. Solids Struct. 37, 411–422 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  55. Bennet, C.H.: Serially deposited amorphous aggregates of hard spheres. J. Appl. Phys. 43, 2727–2734 (1972)

    Article  Google Scholar 

  56. Lu, G.Q., Ti, L.B., Ishizaki, K.: A new algorithm for simulating the random packing of monosized powder in CIP processes. Mater. Manufact. Process. 9, 601–621 (1994)

    Article  Google Scholar 

  57. Kansal, A.R., Truskett, T.M., Torquato, S.: Nonequilibrium hard-disk packing with controlled orientational order. J. Chem. Phys. 113, 4844–4851 (2000)

    Article  Google Scholar 

  58. Cesarano III, J., McEuen, M.J., Swiler, T.: Computer simulation of particle packing. Int. SAMPE Tech. Conf. 27, 658–665 (1995)

    Google Scholar 

  59. Furukawa, K., Imai, K., Kurashige, M.: Simulated effect of box size and wall on porosity of random packing of spherical particles. Acta Mech. 140, 219–231 (2000)

    Article  MATH  Google Scholar 

  60. Nolan, G.T., Kavanagh, P.E.: Computer simulation of random packing of hard spheres. Powder Technol. 72, 149–155 (1992)

    Article  Google Scholar 

  61. Buryachenko, V.A., Pagano, N.J.: Multiscale analysis of multiple interacting inclusions problem: finite number of interacting inclusions. Math. Mech. Solids 10, 25–62 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  62. Clarke, A.S., Willey, J.D.: Numerical simulation of the dense random packing of a binary mixture of hard spheres: amorphous metals. Phys. Rev. B 35, 7350–7356 (1987)

    Article  Google Scholar 

  63. He, D., Ekere, N.N.: Structure simulation of concentrated suspensions of hard spherical particles. AIChE J. 47, 53–59 (2001)

    Article  Google Scholar 

  64. Knott, G.M., Jackson, T.L., Buckmaster, J.: Random packing of heterogeneous propellants. AIAA J. 39, 678–686 (2000)

    Article  Google Scholar 

  65. Ogen, L., Troadec, J.P., Gervois, A., Medvedev, N.: Computer Simulation and Tessellations of Granular Materials. Foams and Emulsions, pp. 527–545. Kluwer, Dordrecht (1998)

    Google Scholar 

  66. Berryman, J.G.: Random close packing of hard spheres and disks. Phys. Rev. A 27, 1053–1061 (1983)

    Article  Google Scholar 

  67. Cheng, Y.F., Guo, S.J., Lay, H.Y.: Dynamic simulation of random packing of spherical particles. Powder Technol. 107, 123–130 (2000)

    Article  Google Scholar 

  68. Kroner, E.: Statistical modeling. In: Gittus, J., Zarka, J. (eds.) Modeling Small Deformations of Polycrystals, pp. 229–291. Elsevier, London/New York (1986)

    Chapter  Google Scholar 

  69. Hinrichsen, E.L., Feder, J., Jossang, T.: Geometry of random sequential adsorption. J. Statist. Phys. 44, 793–827 (1986)

    Article  Google Scholar 

  70. Lotwick, H.W.: Simulations on some spatial hard core models, and the complete packing problem. J. Statist. Comp. Simul. 15, 295–314 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  71. Malcolm, M.A., Simpson, R.B.: Local versus global strategies for adaptive quadrature. ACM Trans. Math. Softw. 1(2), 129–146 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  72. Krommer, A.R., Ueberhuber, C.W.: Computational Integration. SIAM Publications, Philadelphia (1998)

    Google Scholar 

  73. Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. J. SIAM Numer. Anal. 19(6), 1260–1262 (1982)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project 14-01-96024) and grant of the President of Russian Federation for state support of young Russian scientists (MK-5172.2015.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Tashkinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tashkinov, M.A. (2015). Methods of Stochastic Mechanics for Characterization of Deformation in Randomly Reinforced Composite Materials. In: Silberschmidt, V., Matveenko, V. (eds) Mechanics of Advanced Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17118-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17118-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17117-3

  • Online ISBN: 978-3-319-17118-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics