Skip to main content

Use of the Differential Calculus for Finding Inflection Points and Cusps

  • Chapter
L’Hôpital's Analyse des infiniments petits

Part of the book series: Science Networks. Historical Studies ((SNHS,volume 50))

  • 1355 Accesses

Abstract

In Chapter 4 of the Analyse, l’Hôpital defines higher order differentials and describes how second order differentials may be used to locate inflection points and cusps on a curve. In addition to the usual rectangular coordinates, l’Hôpital also considers the case where ordinates all emanate from a single point. Although these are not the polar coordinates that came into use in later centuries, because there is no accompanying angular coordinate, they are nevertheless useful in this and subsequent chapters for describing certain curves. L’Hôpital finds the inflection points of the prolate cycloid, the Conchoid of Nicomedes and of a curve that is essentially the same as the “Witch of Agnesi.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In (L’Hôpital 1696) the term grandeurs entières is used, literally “whole magnitudes,” yet even though the comparison seems to be to the use of exponents with finite quantities.

  2. 2.

    Compare this to the definition presented in Problem XXI on p. 224.

  3. 3.

    Following Bernoulli [letter 22], L’Hôpital used the term “point de rebroussement,” literally a “point of turning back.” The mathematical term “turning point” has a different meaning from this, so we use the term “cusp,” which is the standard English term for this type of point.

  4. 4.

    In figures 4.9 and 4.10, the author makes use of the same letter M for two different points.

  5. 5.

    Compare this to the example on p. 225.

  6. 6.

    This is essentially the curve that later became known as the “Witch of Agnesi.” This curve considered here is that curve reflected in the line \(y = \frac{a} {2}\); see p. xxxvii for more about this curve.

  7. 7.

    Compare this to the example given on p. IV.

  8. 8.

    If one applies the rules of the differential calculus, the value of dy would be the negative of the given value. However, the coordinates in this problem are set up so that as y increases, x decreases, so the author adjusts the sign of dy as described earlier (see §8). In any case, the value of ddy that follows has the correct sign.

  9. 9.

    Compare this to the example given on p. 231.

  10. 10.

    As in Example IV, in this chapter, this value of dy has its sign adjusted.

  11. 11.

    In (L’Hôpital 1696), the denominator contained \(\overline{4\mathit{ax} - 4x^{3}}\), with a note in the Errata to replace − 4x 3 with − 4xx. In fact, that term − 4x 3 is correct, whereas for 4ax should have been replaced with 4axx.

  12. 12.

    Compare this to the example given on p. 238.

  13. 13.

    I.e., the product of the lengths of the arc AE and the line b.

  14. 14.

    This curve is closely related to Spiral of Fermat. See p. xxxvii for further discussion of this curve.

  15. 15.

    I.e., BE is the third proportional to AB and BF, or AB: BF: : BF: BE.

References

  • Bernoulli, Johann, Opera Omnia, vol. 3, Bousquet, Lausanne, 1742.

    Google Scholar 

  • Bernoulli, Johann, Der Briefwechsel von Johann I Bernoulli, vol. 1, ed. O. Spiess, Birkhäuser, Basel, 1955.

    Google Scholar 

  • Bernoulli, Johann, Der Briefwechsel von Johann I Bernoulli, vol. 2, ed. P. Costabel, J. Peiffer, Birkhäuser, Basel, 1988.

    Google Scholar 

  • Bernoulli, Johann, Der Briefwechsel von Johann I Bernoulli, vol. 3, ed. P. Costabel, J. Peiffer, Birkhäuser, Basel, 1992.

    Google Scholar 

  • Bradley, Robert E., “The Curious Case of the Bird’s Beak,” International J. Math. Comp. Sci., 1 (2006), pp. 243–268.

    Google Scholar 

  • Bossut, Charles, Histoire Générale des Mathématiques, vol. 2, 2nd ed., F. Louis, Paris, 1810.

    Google Scholar 

  • Burton, David, The Hstory of Mathematics: An Introduction, 6th ed., Mc Graw Hill, Boston, 2007.

    Google Scholar 

  • Cohen, I. Bernard, A Guide to Newton’s Principia, in The Principia, Newton, Isaac, University of California Press, Berkeley and Los Angeles, 1999.

    Google Scholar 

  • Suzuki, Jeff “The Lost Calculus (1637–1670): Tangency and Optimization without Limits,” Mathematics Magazine, 78 (2005), pp. 339–353.

    Google Scholar 

  • Descartes, René, trans. , Smith & Latham, The Geometry of René Descartes, Dover, New Yrok, 1954.

    Google Scholar 

  • Eneström, Gustav, “Sur le part de Jean Bernoulli dans la publication de l’Analyse des infiniment petitsBibliotecha Mathematica, 8 (1894), pp. 65–72.

    Google Scholar 

  • Fontenelle, Bernard de, Histoire du renouvellement de l’Académie royale des sciences, Boudot, Paris, 1708.

    Google Scholar 

  • Hahn, Alexander, “Two Historical Applications of Calculus,” The College Mathematics Journal, 29 (1998), pp. 99–103.

    Google Scholar 

  • Hall, A. Rupert, Philosophers at War, Cambridge U. Press, Cambridge, 1980.

    Google Scholar 

  • Huygens, Christiaan. Horologium Oscillatorium sive de motu pendulorum, F. Muguet, Paris, 1673. English translation by Richard J. Blackwell, The Pendulum Clock or Geometrical Demonstrations Concerning the Motion of Pendula as Applied to Clocks, Iowa State University Press, Ames, 1986. Page references are to the 1986 translation of Huygens’ Horologium Oscillatorium.

    Google Scholar 

  • Katz, Victor, History of Mathematics: An Introduction, 3rd ed., Addison-Wesley, Boston, 2009.

    Google Scholar 

  • Leibniz, Willhelm G. von, “Nova methodus pro maximis et minimis,” Acta eruditorum, 3 (1684), p. 467–473.

    Google Scholar 

  • l’Hôpital, Guillaume F. A. de, “Méthode facile pour déterminer ler points des caustiques …,” Mémoires de mathématique et de physique, tires des registres de l’Académie Royale des Sciences, 1693, pp. 129–133.

    Google Scholar 

  • Anonymous (Guillaume François Antoine, Marquis de l’Hôpital), Analyse des infiniment petits, Imprimerie Royale, Paris, 1696.

    Google Scholar 

  • l’Hôpital, Guillaume F. A. de, Traité analytique des sections coniques, Boudot, Paris, 1707.

    Google Scholar 

  • l’Hôpital, Guillaume F. A. de, Analyse des infiniment petits pour l’intellignece des lignes courbes, 2nd ed., Montalant, Paris, 1715.

    Google Scholar 

  • l’Hôpital, Guillaume F. A. de, Analyse des infiniment petits pour l’intellignece des lignes courbes, 2nd ed. [sic], Montalant, Paris, 1716.

    Google Scholar 

  • l’Hôpital, Guillaume F. A. de, Analyse des infiniment petits pour l’intellignece des lignes courbes, new ed. with a commentary by l’abbé Aimé-Henri Paulian, Didot le jeune, Paris, 1768.

    Google Scholar 

  • l’Hôpital, Guillaume F. A. de, Analyse des infiniment petits pour l’intellignece des lignes courbes, new ed., revised and augmented by Arthur LeFevre, A. Jombert, Paris, 1768.

    Google Scholar 

  • Lockwood, E. H. (1971). A Book of Curves. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Montucla, Jean F., Histoire des Mathématiques, second ed., vol. 2, Agasse, Paris, 1799.

    Google Scholar 

  • Schafheitlin, Paul, “Johannis (I) Bernoullii Lectiones de calculo differentialium,” Verhandlungen der Naturforschenden Gesellschaft in Basel, 34, pp. 1–32.

    Google Scholar 

  • Stone, Edmund, An Analytick Treatise of Conick Sections, Senex et al, London, 1723.

    Google Scholar 

  • Stone, Edmund, The Method of Fluxions, both Direct and Inverse, Innys, London, 1730.

    Google Scholar 

  • Varignon, Pierre, Eclaircissemens sur l’analyse des infiniment petits, Rollin, Paris, 1725.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bradley, R.E., Petrilli, S.J., Sandifer, C.E. (2015). Use of the Differential Calculus for Finding Inflection Points and Cusps. In: L’Hôpital's Analyse des infiniments petits. Science Networks. Historical Studies, vol 50. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-17115-9_4

Download citation

Publish with us

Policies and ethics