Back into Future: The Systems Biology to Come

  • Regine KollekEmail author
  • Imme Petersen
  • Martin Döring
  • Anne Brüninghaus


Systems biology is a multidimensional endeavor shaped by cultural and societal factors, as well as by the requirements of scientific practice. By taking up the initial questions of our study, this chapter reveals basic assumptions and constitutive conditions of systems biology, and embeds our findings in a broader scientific and sociocultural context. It first carves out some presuppositions of contemporary science in general, and of systems biology in particular, and reflects them with regard to different paradigms in biology as well as to its past and future developments imagined by systems biologists. Next we discuss the epistemic implications of systems biology’s practice, especially its dependence on ICT. Against this background we address the question of whether systems biology should be regarded as an approach or a discipline and offer a new and refreshing answer to this lasting controversy. How science policy pertinent to systems biology is perceived by different actors in the field, and how it shapes systems biology, completes the picture of contextualized scientific development. By referring to public perceptions of systems biology in Germany and Austria and its metaphorical framings in the media, the final section provides a short and speculative outlook on the possible futures of systems biology.


Presupposition Reductionism Holism Paradigm Epistemic practice Systems biology Scientific discipline 


  1. Ahn AC, Tewari M, Poon CS, Phillips RS (2006) The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med 3(6):e208PubMedCentralPubMedCrossRefGoogle Scholar
  2. Artigas M (2000) The Mind of the Universe. In: Ramos A, George MI (eds) Faith, scholarship, and culture in the 21st century. The Catholic University of America Press, Washington, pp 113–125Google Scholar
  3. Breitling R (2010) What is systems biology? Front Physiol 1(Article 9):1–5Google Scholar
  4. Cai Y, González JV, Liu Z, Huang T (2014) Computational systems biology methods in molecular biology, chemistry biology, molecular biomedicine, and biopharmacy. Biomed Res Int. doi: 10.1155/2014/746814 Google Scholar
  5. Calvert J, Fujimura JH (2011) Calculating life? Duelling discourses in interdisciplinary systems biology. Stud Hist Philos Biol Biomed Sci 42:155–163PubMedCrossRefGoogle Scholar
  6. Cobern WW (2000) The nature of science and the role of knowledge and belief. Sci Educ 9:219–246CrossRefGoogle Scholar
  7. De Haro S (2013) Science and philosophy: a love-hate relationship. Talk delivered at the conference rethinking liberal education. Amsterdam University College, 15 June 2013. Accessed 22 Jan 2015
  8. Dronamraju KR (2006) Hybrid paradigms. Endeavour 30(2):41PubMedCrossRefGoogle Scholar
  9. Gatherer D (2010) So what do we really mean when we say that systems biology is holistic? BMC Syst Biol 4:22PubMedCentralPubMedCrossRefGoogle Scholar
  10. Green S (2013) When one model is not enough: combining epistemic tools in systems biology. Stud Hist Philos Biol Biomed Sci 44(2):170–180PubMedCrossRefGoogle Scholar
  11. Hood L, Rowen L, Galas DJ, Aitchison JD (2008) Systems biology at the Institute for Systems Biology. Brief Funct Genomic Proteomic 7(4):239–248PubMedCrossRefGoogle Scholar
  12. Joyner MJ, Pedersen BK (2011) Ten questions about systems biology. J Physiol 589(Pt 5):1017–1030PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kirschner MW (2005) The meaning of systems biology. Cell 121(4):503–504PubMedCrossRefGoogle Scholar
  14. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664PubMedCrossRefGoogle Scholar
  15. Kitano H (2010) Grand challenges in systems physiology. Front Physiol 1(3):1–2Google Scholar
  16. Knorr-Cetina K (1981) The manufacture of knowledge. an essay on the constructivist and contextual nature of science. Pergamon Press, OxfordGoogle Scholar
  17. Knorr Cetina K (1999) Epistemic cultures: how the sciences make knowledge. Harvard University Press, CambridgeGoogle Scholar
  18. Knorr Cetina K (2007) Culture in global knowledge societies: knowledge cultures and epistemic cultures. Interdiscipl Sci Rev 32(4):361–375CrossRefGoogle Scholar
  19. Kohl P, Crampin EJ, Quinn TA, Noble D (2010) Systems biology: an approach. Clin Pharmacol Ther 88(1):25–33PubMedCrossRefGoogle Scholar
  20. Kuhn TS (1996) The structure of scientific revolutions, 3rd edn. University of Chicago Press (first published 1962)Google Scholar
  21. Kuster DW, Merkus D, van der Velden J, Verhoeven AJ, Duncker DJ (2011) ‘Integrative Physiology 2.0’: integration of systems biology into physiology and its application to cardiovascular homeostasis. J Physiol 589(Pt 5):1037–1045PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lander AD (2010) The edges of understanding. BMC Biol 8:40PubMedCentralPubMedCrossRefGoogle Scholar
  23. Latour B (1987) Science in action. Harvard University Press, CambridgeGoogle Scholar
  24. Latour B, Woolgar S (1986) Laboratory life: the construction of scientific facts, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  25. Leonelli S, Ankeny RA (2012) Re-thinking organisms: the impact of databases on model organism biology. Stud Hist Philos Biol Biomed Sci 43:29–36PubMedCrossRefGoogle Scholar
  26. MacLeod M, Nersessian NJ (2013) The creative industry of integrative systems biology. Mind Soc 12:35–48CrossRefGoogle Scholar
  27. Marcum JA (2005) Metaphysical presuppositions and scientific practices: reductionism and organicism in cancer research. Int Stud Phil Sci 19(1):31–45CrossRefGoogle Scholar
  28. Marcum JA (2008) Does systems biology represent a Kuhnian paradigm shift? New Phytol 179(3):587–589PubMedCrossRefGoogle Scholar
  29. Medina MA (2013) Systems biology for molecular life sciences and its impact in biomedicine. Cell Mol Life Sci 70:1035–1053PubMedCrossRefGoogle Scholar
  30. Nagel T (1998) Reductionism and antireductionism. In: Bock GR, Goode JA (eds) The limits of reductionism in biology. Novartis Foundation Symposium 213. Wiley, Chichester, pp 3–14Google Scholar
  31. Nelkin D, Lindee MS (1995) The DNA mystique. The gene as a cultural icon. Freeman Comp, New YorkGoogle Scholar
  32. Noble D (2006) The music of life: biology beyond the genome. Oxford University Press, OxfordGoogle Scholar
  33. Noble D (2008) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93(1):16–26PubMedCrossRefGoogle Scholar
  34. Palsson BO (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Peters HP, Brossard D, de Cheveigné S, Dunwoody S, Heinrichs H, Jung A, Kallfass M, Miller S, Petersen I, Tsuchida S, Cain A, Paquez A-S (2009) Medialisierung der Wissenschaft und ihre Relevanz für das Verhältnis zur Politik. In: Peters HD (ed) Medienorientierung biomedizinischer Forscher im internationalen Vergleich: die Schnittstelle von Wissenschaft & Journalismus und ihre politische Relevanz. Forschungszentrum Jülich, pp 9–43Google Scholar
  36. Rödder S (2009) Wahrhaft Sichtbar – Humangenomforscher in der Öffentlichkeit. In: Bora A, Maasen S, Reinhardt C, Wehling P (eds) Reihe Wissenschafts- und Technikforschung. Nomos, Baden-BadenGoogle Scholar
  37. Sandoval WA, Morrison K (2003) High school students’ ideas about theories and theory change after a biological inquiry unit. J Res Sci Teach 40(4):369–392CrossRefGoogle Scholar
  38. Strange K (2005) The end of ‘naive reductionism’: rise of systems biology or renaissance of physiology? Am J Physiol Cell Physiol 288:C968–C974PubMedCrossRefGoogle Scholar
  39. Trewavas A (2006) A brief history of systems biology. Plant Cell 18:2420–2430PubMedCentralPubMedCrossRefGoogle Scholar
  40. Von Bertalanffy L (1972) The history and status of general systems theory. AMJ 15(4):407–426CrossRefGoogle Scholar
  41. Weingart P (2001) Die Stunde der Wahrheit? Zum Verhältnis der Wissenschaft zu Politik, Wirtschaft und Medien in der Wissensgesellschaft. Velbrück, WeilersvistGoogle Scholar
  42. Welch GR, Clegg JS (2010) From protoplasmic theory to cellular systems biology: a 150-year reflection. Am J Physiol Cell Physiol 298(6):C1280–C1290PubMedCrossRefGoogle Scholar
  43. Westerhoff HV, Winder C, Messiha H, Simeonidis E, Adamczyk M, Verma M, Bruggeman FJ, Dunn W (2009) Systems biology: the elements and principles of life. FEBS Lett 583(24):3882–3890PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Regine Kollek
    • 1
    Email author
  • Imme Petersen
    • 1
  • Martin Döring
    • 1
  • Anne Brüninghaus
    • 1
  1. 1.Research Centre for Biotechnology, Society and Environment (FSP BIOGUM)University of HamburgHamburgGermany

Personalised recommendations