Understanding Systems Biology: A Place for Social Science Analysis

  • Regine KollekEmail author
  • Imme Petersen
  • Anne Brüninghaus
  • Martin Döring


Systems biology is a new approach in the life sciences aiming at a more holistic understanding of biological entities. Developing out of the shortcomings of molecular biology in explaining complex and dynamic features of living systems, it can have far-reaching implications for science and society, as well as for our understanding of life. In order to understand the potentials and impacts of systems biology, a broad analysis of this new approach was undertaken from the social and cultural studies of science perspective, the results of which are laid down in this book. This chapter introduces the subject and our research concept and outlines the scope and the aims of the book. The first section describes the rise of systems biology, its definitions and main aims. In a second step the conceptual approach of our analysis is laid out. We introduce the concept of context and context analysis and outline the cultural, practice-related, and societal environments, which were considered in our exploration of systems biology. The second section first describes the methodical approaches applied in our study before it depicts the goals and hypotheses of this book and provides a short synopsis of the following chapters.


Systems biology Context Social and cultural analysis of science Philosophy of science Holism Implications for science and society 


  1. Andersen H (2001) The history of reductionism versus holistic approaches to scientific research. Endeavour, 25(4):153–156.Google Scholar
  2. Austin JL (1965) How to do things with words. Oxford University Press, OxfordGoogle Scholar
  3. Baianu IC (2006) Robert Rosen’s work and complex systems biology. Axiomathes 16(1–2):25–34CrossRefGoogle Scholar
  4. Benedict R (1934) Patterns of culture. Houghton Mifflin, New York, NYGoogle Scholar
  5. Beskow LM, Burke W (2010) Offering individual genetic research results: context matters. Sci Transl Med 2(38):38cm20. doi: 10.1126/scitranslmed.3000952 PubMedCentralPubMedGoogle Scholar
  6. Bongaerts G (2007) Soziale Praxis und Verhalten – Ueberlegungen zum Practice Turn in Social Theory. Z Soziol 36:246–260Google Scholar
  7. Bonß W, Hohlf1eld R, Kollek R (eds) (1993) Wissenschaft als Kontext – Kontexte der Wissenschaft. Junius Verlag, HamburgGoogle Scholar
  8. Bonß W, Hohlfeld R, Kollek R (1994) Vorüberlegungen zu einem kontextualistischen Modell der Wissenschaftsentwicklung. Dtsch Z Philos 42(3):439–454Google Scholar
  9. Borodina I, Nielsen J (2005) Fromgenomesto in silico cells via metabolic networks. Curr Opin Biotechnol 16:350–355PubMedCrossRefGoogle Scholar
  10. Bourdieu P (1977) Outline of a theory of practice. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. Breitling R (2010) What is systems biology? Front Physiol 1(Article 9):1–5Google Scholar
  12. Brown JS, Duguid P (2001) Knowledge and organization: a social-practice perspective. Organ Sci 12(2):198–213CrossRefGoogle Scholar
  13. Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15(1):45–50PubMedCrossRefGoogle Scholar
  14. Burns T (1992) Erving Goffman. Routledge, LondonCrossRefGoogle Scholar
  15. Calvert J, Fujimura JH (2011) Calculating life? Duelling discourses in interdisciplinary systems biology. Stud Hist Philos Biol Biomed Sci 42(2):155–163PubMedCrossRefGoogle Scholar
  16. Cardinale S, Arkin AP (2012) Contextualizing context for synthetic biology – identifying causes of failure of synthetic biological systems. Biotechnol J 7:856–866PubMedCentralPubMedCrossRefGoogle Scholar
  17. Clarke A, Parsons E (eds) (1997) Culture, kinship and genes. Towards cross-cultural genetics. St. Martins’s, New York, NYGoogle Scholar
  18. Conti F, Valerio MC, Zbilut JP, Giuliani A (2007) Will systems biology offer new holistic paradigms to life sciences? Syst Synth Biol 1(4):161–165PubMedCentralPubMedCrossRefGoogle Scholar
  19. Cowley AW (2004) The elusive field of systems biology. Physiol Genomics 16:285–286PubMedCrossRefGoogle Scholar
  20. Dilley RM (2002) The problem of context in social and cultural anthropology. Lang Commun 22:437–456CrossRefGoogle Scholar
  21. Dove ES, Joly Y, Tassé AM, (2015) Public Population Project in Genomics and Society (P3G) International Steering Committee, International Cancer Genome Consortium (ICGC) Ethics and Policy Committee, Knoppers BM, Public Population Project in Genomics and Society P3G International Steering Committee, International Cancer Genome Consortium ICGC Ethics and Policy Committee (2014) Genomic cloud computing: legal and ethical points to consider. Eur J Hum Genet 23:1271–1278.
  22. Drell D (2007) The relation of ethics and science: a commentary on “The study of socioethical issues in systems biology”. Am J Bioeth 7(4):79–80PubMedCrossRefGoogle Scholar
  23. Fang FC, Casadevall A (2011) Reductionistic and holistic science. Infect Immun 79(4):1401–1404PubMedCentralPubMedCrossRefGoogle Scholar
  24. Federoff HJ, Gostin LO (2009) Evolving from reductionism to holism: is there a future for systems medicine? JAMA 302(9):994–996PubMedCrossRefGoogle Scholar
  25. Floridi L (2012) Turing’s three philosophical lessons and the philosophy of information. Phil Trans R Soc A 370:3536–3542PubMedCrossRefGoogle Scholar
  26. Foster MW (2007) Everything old is new again, including systems biology. AJOB 7(4):85–86PubMedGoogle Scholar
  27. Garfinkel H (1967) Studies in ethnomethodology. Polity Press, Malden, MAGoogle Scholar
  28. Gatherer D (2010) So what do we really mean when we say that systems biology is holistic? BMC Syst Biol 4(22):1–12Google Scholar
  29. Geertz C (1973) The interpretation of cultures. Basic Books, New York, NYGoogle Scholar
  30. Giddens A (1984) The constitution of society. Outline of the theory of structuration. University of California Press, Berkeley, CAGoogle Scholar
  31. Gillin JL, Gillin JP (1948) Cultural sociology. An introduction to sociology. Macmillan, New York, NYGoogle Scholar
  32. Goffman E (1974) Frame analysis: an essay on the organization of experience. Harper and Row, LondonGoogle Scholar
  33. Goffman E (1981) Forms of talk. University of Pennsylvania Press, Philadelphia, PAGoogle Scholar
  34. Goffman E (1983) Felicity’s condition. Am J Sociol 89(1):1–53CrossRefGoogle Scholar
  35. Gomez-Cabrero D, Abugessaisa I, Maier D, Teschendorff A, Merkenschlager M, Gisel A, Ballestar E, Bongcam-Rudloff E, Conesa A, Tegnér J (2014) Data integration in the era of omics: current and future challenges. BMC Syst Biol 8(Suppl 2):I1PubMedCentralPubMedCrossRefGoogle Scholar
  36. Goodman AH, Heath D, Lindee MS (eds) (2003) Genetic nature/culture. Anthropology and science beyond the two-culture divide. University of California Press, Berkeley, CAGoogle Scholar
  37. Goodwin C, Duranti A (1992) Rethinking context: an introduction. In: Duranti A, Goodwin C (eds) Rethinking context: language as an interactive phenomenon. Cambridge University Press, Cambridge, pp 191–227Google Scholar
  38. Green S, Wolkenhauer O (2012) Integration in action. EMBO Rep 13(9):769–771PubMedCentralPubMedCrossRefGoogle Scholar
  39. Grunwald A (2004) Vision Assessment as a new element of the Technology Futures Analysis Toolbox. In: Proceedings of the EU-US scientific seminar: new technology foresight, forecasting & assessment methods. Seville, 13–14 May 2004Google Scholar
  40. Grunwald A (2009) Vision assessment supporting the governance of knowledge – the case of futuristic nanotechnology. In: Bechmann G, Gorokhov V, Stehr N (eds) The social integration of science. Institutional and epistemological aspects of the transformation of knowledge in modern society. Edition Sigma, Berlin, pp 147–168Google Scholar
  41. Halliday MAK, Hasan R (1985) Language, context and text: aspects of language in a social semiotic perspective. Oxford University Press, OxfordGoogle Scholar
  42. Hansen KP (2011) Kultur und Kulturwissenschaft, 4th edn. UTB, TübingenGoogle Scholar
  43. Harris M (1983) Cultural anthropology. Harper & Row, New York, NYGoogle Scholar
  44. Hood L, Balling R, Auffray C (2012) Revolutionizing medicine in the 21st century through systems approaches. Biotechnol J 7(8):992–1001PubMedCentralPubMedCrossRefGoogle Scholar
  45. Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol 29(6):613–624PubMedCrossRefGoogle Scholar
  46. Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640–643PubMedCrossRefGoogle Scholar
  47. Hood L, Rowen L, Galas DJ, Aitchison JD (2008) Systems biology at the Institute for Systems Biology. Brief Funct Genomic Proteomic 7(4):239–248PubMedCrossRefGoogle Scholar
  48. Huang S, Wikswo J (2006) Dimensions of systems biology. Rev Physiol Biochem Pharmacol 157:81–104PubMedGoogle Scholar
  49. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372PubMedCrossRefGoogle Scholar
  50. Jasanoff S (2004a) Ordering knowledge, ordering society. In: Jasanoff S (ed) States of knowledge: the co-production of science and the social order. Routledge, London, pp 13–45CrossRefGoogle Scholar
  51. Jasanoff S (ed) (2004b) States of knowledge: the co-production of science and the social order. Routledge, LondonGoogle Scholar
  52. Jones R (2004) The problem of context in computer mediated communication. In: LeVine P, Scollon R (eds) Discourse and technology: multimodal discourse analysis. Georgetown University Press, Washington, DC, pp 20–33Google Scholar
  53. Keller EF (2002) Making sense of life. Explaining biological development with models, metaphors, and machines. Harvard University Press, CambridgeGoogle Scholar
  54. Kirschner MW (2005) The meaning of systems biology. Cell 121(4):503–504PubMedCrossRefGoogle Scholar
  55. Kitano H (2000) Perspectives on systems biology. New Generat Comput 18:199–216CrossRefGoogle Scholar
  56. Kitano H (2001) Foundations of systems biology. MIT Press, CambridgeGoogle Scholar
  57. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664PubMedCrossRefGoogle Scholar
  58. Kitano H, Ghosh S, Matsuoka Y (2011) Social engineering for virtual ‘big science’ in systems biology. Nat Chem Biol 7(6):323–326PubMedCrossRefGoogle Scholar
  59. Knorr-Cetina K (1981) The manufacture of knowledge. an essay on the constructivist and contextual nature of science. Pergamon Press, OxfordGoogle Scholar
  60. Knorr-Cetina K (1999) Epistemic cultures: how the sciences make knowledge. Harvard University Press, CambridgeGoogle Scholar
  61. Kohl P, Crampin EJ, Quinn TA, Noble D (2010) Systems biology: an approach. Clin Pharmacol Ther 88(1):25–33PubMedCrossRefGoogle Scholar
  62. Kollek R (1990) The limits of experimental knowledge. A feminist perspective on the ecological risks of genetic engineering. Issues Reprod Gene Eng 3(2):125–135Google Scholar
  63. Kovala U (2014) Theories of context, theorizing context. JLT 8(1):158–177CrossRefGoogle Scholar
  64. Křeček J (2010) Holism and life manifestations: molecular and space-time biology. Physiol Res 59:157–163PubMedGoogle Scholar
  65. Kroeber AL, Kluckhohn C (1952) Culture – a critical review of concepts and definitions. Vintage Books, New York, NYGoogle Scholar
  66. Kuster DW, Merkus D, van der Velden J, Verhoeven AJ, Duncker DJ (2011) ‘Integrative Physiology 2.0’: integration of systems biology into physiology and its application to cardiovascular homeostasis. J Physiol 589(Pt 5):1037–1045PubMedCentralPubMedCrossRefGoogle Scholar
  67. Lakoff G, Johnson M (1980) Metaphors we live by. University of Chicago Press, Chicago, ILGoogle Scholar
  68. Latour B, Woolgar S (1979) Laboratory life: the construction of scientific facts. Sage, Beverly Hils, CAGoogle Scholar
  69. Laubichler MD (2000) The organism is dead. Long live the organism! Perspect Sci 8(3):286–315CrossRefGoogle Scholar
  70. Loscalzo J, Barabasi AL (2011) Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med 3(6):619–627PubMedCentralPubMedCrossRefGoogle Scholar
  71. Lynch M (1993) Scientific practice and ordinary action. Ethnomethodology and social studies of science. Cambridge University Press, CambridgeGoogle Scholar
  72. MacLeod M, Nersessian NJ (2013) The creative industry of integrative systems biology. Mind Soc 12:35–48CrossRefGoogle Scholar
  73. Malinowski B (1923) The problem of meaning in primitive languages. In: Ogden CK, Richards IA (eds) The meaning of meaning. Routledge & Kegan Paul, London, pp 146–152Google Scholar
  74. Medina MÁ (2013) Systems biology for molecular life sciences and its impact in biomedicine. Cell Mol Life Sci 70(6):1035–1053PubMedCrossRefGoogle Scholar
  75. Musschenga AW (2005) Empirical ethics, context-sensitivity, and contextualism. J Med Philos 30(5):467–490PubMedCrossRefGoogle Scholar
  76. Nelkin D, Lindee MS (1995) The DNA mystique. The gene as a cultural Icon. Freeman Comp, New York, NYGoogle Scholar
  77. Noble D (2006) The music of life: biology beyond the genome. Oxford University Press, OxfordGoogle Scholar
  78. Nowotny H, Testa G (2009) Die gläsernen Gene. Die Erfindung des Individuums im molekularen Zeitalter. Frankfurt a. M., SuhrkampGoogle Scholar
  79. O’Malley MA, Brigandt I, Love AC, Crawford JW, Gilbert JA, Knight R, Mitchell SD, Rohwer F (2014) Multilevel research strategies and biological systems. Philos Sci 81(5):811–828CrossRefGoogle Scholar
  80. O’Malley MA, Calvert J, Dupré J (2007) The study of socioethical issues in systems biology. American Journal of Bioethics, 7(4):67–78Google Scholar
  81. O’Malley MA, Dupré J (2005) Fundamental issues in systems biology. Bioessays 27:1270–1276PubMedCrossRefGoogle Scholar
  82. Ortner S (1984) Theory in anthropology since the sixties. Comp Stud Soc Hist 26(1):126–166CrossRefGoogle Scholar
  83. Pesce F, Pathan S, Schena FP (2013) From -omics to personalized medicine in nephrology: integration is the key. Nephrol Dial Transplant 2013(1):24–28CrossRefGoogle Scholar
  84. Pickering A (1992a) From science as knowledge to science as practice. In: Pickering A (ed) Science as practice and culture. University of Chicago Press, Chicago, IL, pp 1–28CrossRefGoogle Scholar
  85. Pickering A (ed) (1992b) Science as practice and culture. Chicago Press, Chicago, ILGoogle Scholar
  86. Price AW (2008) Contextuality in Practical Reason. Oxford University Press.Google Scholar
  87. Rheinberger H (2008) What happened to molecular biology? Bio Soc 3:303–310Google Scholar
  88. Reckwitz A (2003) Grundelemente einer Theorie sozialer Praktiken: eine sozialtheoretische Perspektive. Z Soziol 32(4):282–301Google Scholar
  89. Reckwitz A (2004) Die Reproduktion und die Subversion sozialer Praktiken. Zugleich ein Kommentar zu Pierre Bourdieu und Judith Butler. In: Hörning K, Reuter J (eds) Doing culture - neue Positionen zum Verhältnis von Kultur und sozialer Praxis. Transcript, Bielefeld, pp 40–54Google Scholar
  90. Rosen R (1968) A means toward a new holism. Science 161(3836):34–35CrossRefGoogle Scholar
  91. Rouse J (1996) Engaging science. How to understand its practices philosophically. Cornell University Press, Ithaca, NYGoogle Scholar
  92. Rouse J (2001) Cultural studies of science. Division I faculty publications. Paper 15. Accessed 15 Dec 2014
  93. Rouse J (2002) How scientific practices matter. Reclaiming philosophical naturalism. University of Chicago Press, Chicago, ILGoogle Scholar
  94. Sbisà M (2002) Speech acts in context. Language & Communication 22: 421–436Google Scholar
  95. Schatzki T (2002) The site of the social. A philosophical account of the constitution of social life and change. Pennsylvania State University Press, Philadelphia, PAGoogle Scholar
  96. Scheff TJ (2005) The Structure of Context: Deciphering “Frame Analysis”. Sociological Theory, 23(4):368–385Google Scholar
  97. Schegloff EA (1992) In Another Context. In: A. Duranti and C. Goodwin (eds.), Rethinking Context: Language as an Interactive Phenomenon. Cambridge: Cambridge University Press, pp 193–227Google Scholar
  98. Schiffrin D (1994) Approaches to Discourse. Oxford: BlackwellGoogle Scholar
  99. Schmitt R (1997) Metaphernanalyse als sozialwissenschaftliche Methode: mit einigen Bemerkungen zur theoretischen “Fundierung” psychosozialen Handelns. Psychol Gesellschaftskritik 21(1):57–86Google Scholar
  100. Serafini L, Bouquet P (2004) Comparing formal theories of context in AI. Artif Intell 155:41–67CrossRefGoogle Scholar
  101. Skurvydas A (2005) New methodology in biomedical science: methodological errors in classical science. Medicina (Kaunas) 41(1):7–16Google Scholar
  102. Thomas G (2011) A typology for the case study in social science following a review of definition, discourse and structure. Qual Inq 17(6):511–521CrossRefGoogle Scholar
  103. Tracy K (1998) Analyzing Context: Framing the Discussion. Research on Language and Social Interaction, 31(1):1–28Google Scholar
  104. Trewavas A (2006) A brief history of systems biology. “Every object that biology studies is a system of systems.” Francois Jacob (1974). Plant Cell 18(10):2420–2430PubMedCentralPubMedCrossRefGoogle Scholar
  105. Tylor E (1920) [1871] Primitive culture, vol 1. New York, NY: J.P. Putnam’s SonsGoogle Scholar
  106. von Bertalanffy L (1968) General system theory. Foundations, development, applications. George Braziller, New York, NYGoogle Scholar
  107. Walzer LJ (1990) Medicine in context: a review essay of the history of medicine. Am Hist Rev 95(5):1471–1484CrossRefGoogle Scholar
  108. Waylen KA, Fischer A, McGowan PJK, Thirgood SJ, Milner-Gulland EJ (2010) Effect of local cultural context on the success of community-based conservation interventions. Conserv Biol 24:1119–1129PubMedCrossRefGoogle Scholar
  109. Westerhoff HV, Alberghina L (2005) Systems biology: did we know it all along? In: Alberghina L, Westerhoff HV (eds) Systems biology: definitions and perspectives. Springer, Berlin, pp 3–9CrossRefGoogle Scholar
  110. Westerhoff HV, Kolodkin A, Conradie R, Wilkinson SJ, Bruggeman FJ, Krab K, van Schuppen JH, Hardin H, Bakker BM, Moné MJ, Rybakova KN, Eijken M, van Leeuwen HJ, Snoep JL (2009) Systems biology towards life in silico: mathematics of the control of living cells. J Math Biol 58(1–2):7–34PubMedCrossRefGoogle Scholar
  111. Wolkenhauer O (2001) Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform 2(3):258–270PubMedCrossRefGoogle Scholar
  112. Wolkenhauer O, Fell D, De Meyts P, Blüthgen N, Herzel H, Le Novère N, Höfer T, Schürrle K, van Leeuwen I (2009) SysBioMed report: advancing systems biology for medical applications. IET Syst Biol 3(3):131–136PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Regine Kollek
    • 1
    Email author
  • Imme Petersen
    • 1
  • Anne Brüninghaus
    • 1
  • Martin Döring
    • 1
  1. 1.Research Centre for Biotechnology, Society and Environment (FSP BIOGUM)University of HamburgHamburgGermany

Personalised recommendations