Skip to main content

Role of the Neuropeptide Angiotensin II in Stress and Related Disorders

  • Chapter
  • 1284 Accesses

Abstract

Angiotensin II (Ang II) was described as a peripheral hormone; its synthesis and metabolism were characterized and it is currently known as the renin-angiotensin system (RAS). All the components of the RAS, including the receptors, have been found in brain tissue, indicating a role as a hormone or neuromodulator in the central nervous system. Ang II exerts its principal known actions at the AT1 receptor. Its functions related to AT2 receptors are controversial and associated with AT1 opposite effects, although there is evidence showing cross-talk between both receptors. The metabolism of Ang II generates other active peptides, such as Angiotensin 1–7 and Angiotensin IV, which will not be discussed. Neurobiological research has explained many of the different neuroendocrine and behavioral responses to stressors. Stress is a complex phenomenon in response to physical, environmental, or psychological stimulus. Stress triggers important adaptive functions improving health and survival. Meanwhile, excessive stress can be deleterious, therefore, individuals unable to cope with stress are highly vulnerable to a variety of diseases. Stress is a major contributor of cardiovascular disorders and psychiatric illness such as anxiety and depression. Many studies have confirmed that stress also increases the vulnerability to drug abuse.

The role of Ang II at the periphery and in the central nervous system is vast and complex. For this reason, in this chapter we will focus on the role of brain RAS in stress responses and related pathologies from many other important aspects of Ang II research.

Keywords

  • Ptsd Symptom
  • Corticotrophin Release Hormone
  • Renin Angiotensin System
  • Nucleus Tractus Solitarius
  • Chronic Unpredictable Stress

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-17103-6_8
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-17103-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 8.1

References

  1. Braun-Menéndez E, Fasciolo JC, Leloir LF, Muñoz JM. The substance causing renal hypertension. J Physiol. 1940;98:283–98.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  2. Lavoie JL, Sigmund CD. Minireview: overview of the renin-angiotensin system—an endocrine and paracrine system. Endocrinology. 2003;144:2179–83.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Danser AH. Local renin-angiotensin systems: the unanswered questions. Int J Biochem Cell Biol. 2003;35:759–68.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Iwai N, Inagami T. Identification of two subtypes in the rat type 1 angiotensin II receptor. FEBS Lett. 1992;298:257–60.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Kakar SS, Sellers JC, Devor DC, Musgrove LC, Neill JD. Angiotensin II type-1 receptor subtype cDNAs: differential tissue expression and hormonal regulation. Biochem Biophys Res Commun. 1992;31:1090–6.

    CrossRef  Google Scholar 

  6. Sadamura H, Hein L, Kriegger JE, Pratt RE, Kobilka BK, Dzau V. Cloning, characterization, and expression of two angiotensin receptor (AT-1) isoforms from the mouse genome. Biochem Biophys Res Commun. 1992;185:253–9.

    CrossRef  Google Scholar 

  7. Konoshi H, Kuroda S, Inada Y, Fujisawa Y. Novel subtype of human angiotensin II type 1 receptor: cDNA cloning and expression. Biochem Biophys Res Commun. 1994;199:467–74.

    CrossRef  Google Scholar 

  8. Saavedra JM. Brain and pituitary angiotensin. Endocr Rev. 1992;13(2):329–80.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Thomas WG, Mendelsohn FAO. Molecules in focus: angiotensin receptors form and function and distribution. Int J Biochem Cell Biol. 2003;35:774–9.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Rose JM, Audus KL. AT1 receptors mediate angiotensin II uptake and transport by bovine brain microvessel endothelial cells in primary culture. J Cardiovasc Pharmacol. 1999;33(1):30–5.

    CAS  PubMed  CrossRef  Google Scholar 

  11. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52(3):415–72.

    PubMed  Google Scholar 

  12. Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20(5):953–70.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993;45(2):205–51.

    CAS  PubMed  Google Scholar 

  14. Barnes JM, Steward LJ, Barber PC, Barnes NM. Identification and characterisation of angiotensin II receptor subtypes in human brain. Eur J Pharmacol. 1993;230(3):251–8.

    CAS  PubMed  CrossRef  Google Scholar 

  15. Clauser E, Curnow KM, Davies E, Conchon S, Teutsch B, Vianello B, et al. Angiotensin II receptors: protein and gene structures, expression and potential pathological involvements. Eur J Endocrinol. 1996;134(4):403–11.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Saavedra JM, Ando H, Armando I, Baiardi G, Bregonzio C, Juorio A, et al. Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regul Pept. 2005;128:237–8.

    CrossRef  CAS  Google Scholar 

  17. Mendelsohn FAO, Quirion R, Saavedra JM, Aguilera G, Catt KJ. Autoradiographic localization of angiotensin II receptors in rat brain. Proc Natl Acad Sci USA. 1984;81:1575–9.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  18. Daubert DL, Meadows GG, Wang JH, Sanchez PJ, Speth RC. Changes in angiotensin II receptors in dopamine-rich regions of the mouse brain with age and ethanol consumption. Brain Res. 1999;816:8–16.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Wright JW, Harding JW. The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning and memory. Prog Neurobiol. 2004;72:263–93.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Fogarty DJ, Matute C. Angiotensin receptor-like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes. Glia. 2001;35(2):131–46.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Phillips MI, Sumners C. Angiotensin II in the central nervous system physiology. Regul Pept. 1998;78:1–11.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Tsutsumi K, Saavedra JM. Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol. 1991;261:R209–16.

    CAS  PubMed  Google Scholar 

  23. Schulkin J. Angst and the amygdala. Dialogues Clin Neurosci. 2006;8(4):407–16.

    PubMed Central  PubMed  Google Scholar 

  24. Llano Lopez LH, Caif F, Garcia S, Fraile M, Landa AI, Baiardi G, et al. Anxiolytic-like effect of losartan injected into amygdala of the acutely stressed rats. Pharmacol Rep. 2012;64(1):54–63.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C. Distribution of angiotensin type 1 receptor messenger RNA expression in the adult rat brain. Neuroscience. 1998;82:827–41.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Carrasco GA, Van de Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol. 2003;463(1–3):235–72.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42:33–84.

    PubMed  CrossRef  Google Scholar 

  28. Bali A, Jaggi AS. Angiotensin as stress mediator: role of its receptor and interrelationships among other stress mediators and receptors. Pharmacol Res. 2013;76:49–57.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Wang G, Anrather J, Huang J, Speth RC, Pickel VM, Iadecola C. NADPH oxidase contributes to angiotensin II signaling in the nucleus tractus solitarius. J Neurosci. 2004;24(24):5516–24.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Saavedra JM, Sanchez-Lemus E, Benicky J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications. Psychoneuroendocrinology. 2011;36(1):1–18.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  31. Bregonzio C, Seltzer A, Armando I, Pavel J, Saavedra JM. Angiotensin II AT(1) receptor blockade selectively enhances brain AT(2) receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats. Stress. 2008;11(6):457–66.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  32. Baxter CR, Horvath JS, Duggin GG, Tiller DJ. Effect of age on specific angiotensin II-binding sites in rat brain. Endocrinology. 1980;106(3):995–9.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Israel A, Stromberg C, Tsutsumi K, Garrido MR, Torres M, Saavedra JM. Angiotensin II receptor subtypes and phosphoinositide hydrolysis in rat adrenal medulla. Brain Res Bull. 1995;38(5):441–6.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Voigt JP, Hortnagl H, Rex A, van Hove L, Bader M, Fink H. Brain angiotensin and anxiety-related behavior: the transgenic rat TGR(ASrAOGEN)680. Brain Res. 2005;1046(1–2):145–56.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Belcheva I, Georgiev V, Chobanova M, Hadjiivanova C. Behavioral effects of angiotensin II microinjected into CA1 hippocampal area. Neuropeptides. 1997;31(1):60–4.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Aguilera G, Young WS, Kiss A, Bathia A. Direct regulation of hypothalamic corticotropin -releasing hormone neurons by angiotensin II. Neuroendocrinology. 1995;61:437–44.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Armando I, Carranza A, Nishimura Y, Hoe KL, Barontini M, Terrón JA, et al. Peripheral administration of an angiotensin II AT1 receptor decreases the hypothalamic-pituitary-adrenal response to stress. Endocrinology. 2001;142:3880–9.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Ganong WF, Murakami K. The role of angiotensin II in the regulation of ACTH secretion. Ann N Y Acad Sci. 1987;512:176–86.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Armando I, Volpi S, Aguilera G, Saavedra JM. Angiotensin II AT1 receptor blockade prevents the hypothalamic corticotropin-releasing factor response to isolation stress. Brain Res. 2007;1142:92–9.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  40. Tsutsumi K, Saavedra JM. Angiotensin II receptor subtypes in median eminence and basal forebrain areas involved in the regulation of pituitary function. Endocrinology. 1991;129:3001–8.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Xang G, Xi ZX, Wan Y, Wang H, Bi G. Changes in circulating and tissue angiotensin II during acute and chronic stress. Biol Signals. 1993;2:166–72.

    CrossRef  Google Scholar 

  42. Yang G, Wan Y, Zhu Y. Angiotensin II an important stress hormone. Biol Signals. 1996;5:1–8.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Shigematsu K, Saavedra JM, Plunkett LM, Correa FMA. Angiotensin II binding site in the anteroventral-third ventricle (AV3V) area and related structures of the rat brain. Neurosci Lett. 1986;67:37–41.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Castrén E, Saavedra JM. Repeated stress increase the density of angiotensin II binding sites in the rat paraventricular nucleus and subfornical organ. Endocrinology. 1988;122:370–2.

    PubMed  CrossRef  Google Scholar 

  45. Aguilera G, Kiss A, Luo X. Increased expression of type 1 of angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. J Neuroendocrinol. 1995;7:775–83.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Jezova D, Ochedalski T, Kiss A, Aguilera G. Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. J Neuroendocrinol. 1998;10:67–72.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Makara GB, Antoni FA, Stark E, Karteszi M. Hypothalamic organization of corticotropin releasing factor (CRF) producing structures. In: Muller E, Macleod RM, editors. Endocrine perspective, vol. 4. Amsterdam: Elsevier; 1984. p. 71–120.

    Google Scholar 

  48. Cedarbaum JM, Aghajanian GK. Afferent projections to the rat locus coeruleus as determined by retrograde tracing technique. J Comp Neurol. 1978;178:1–14.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Thiboliet E, Dreifuss JJ. Localization of neurons projecting to the hypothalamic paraventricular nucleus area of the rat : a horseradish peroxidase study. Neuroscience. 1981;6:1315–28.

    CrossRef  Google Scholar 

  50. Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry. 1999;46:1167–80.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Saavedra JM, Armando I, Bregonzio C, Juorio A, Macova M, Pavel J, et al. A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding. Neuropsychopharmacology. 2006;31:1123–34.

    CAS  PubMed  Google Scholar 

  52. Jezova M, Armando I, Bregonzio C, Yu Z-X, Quian S, Ferrans VJ, et al. Angiotensin II AT1 and AT2 receptors contribute to maintain basal adrenomedullary norepinephrine synthesis and tyrosine hydroxylase transcription. Endocrinology. 2003;144:2092–101.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Bregonzio C, Armando I, Ando H, Jezova M, Baiardi G, Saavedra JM. Anti-inflammatory effects of angiotensin II AT1 receptor antagonism prevent stress-induced gastric injury. Am J Physiol. 2003;285:G414–23.

    CAS  Google Scholar 

  54. Shekhar A, Sajdyk TJ, Gehlert DR, Rainnie DG. The amygdala, panic disorder, and cardiovascular responses. Ann N Y Acad Sci. 2003;985:308–25.

    CAS  PubMed  CrossRef  Google Scholar 

  55. Valdez GR, Koob GF. Allostasis and dysregulation of corticotropin-releasing factor and neuropeptide Y systems: implications for the development of alcoholism. Pharmacol Biochem Behav. 2004;79:671–89.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Anderson SM, Kant JG, De Souza EB. Effect of chronic stress on anterior pituitary and brain corticotropin-releasing factor receptors. Pharmacol Biochem Behav. 1993;44:755–61.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Iredale PA, Terwilliger R, Widnell KL, Nestler EJ, Duman RS. Differential regulation of corticotrophin-releasing factor receptor 1 expression by stress and agonist treatments in brain and cultured cells. Mol Pharmacol. 1996;50:1103–10.

    CAS  PubMed  Google Scholar 

  58. Brunson KL, Grigoriadis DE, Lorang MT, Baram TZ. Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of immature rat brain. Exp Neurol. 2002;176:75–86.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Chappell PB, Smith MA, Kilts CD, Bissette G, Ritchie J, Anderson C. Alterations in corticotropin-releasing factor like immunoreactivity in discrete rat brain regions after acute and chronic stress. J Neurosci. 1986;6:2908–14.

    CAS  PubMed  Google Scholar 

  60. Shimizu N, Nakane H, Hori T, Hayashi Y. CRF receptor antagonist attenuates stress-induced noradrenaline release in the medial prefrontal cortex of rats. Brain Res. 1994;654:145–8.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Biggio G, Concas A, Corda MG, Giorgi O, Sanna E, Serra M. Gabaergic and dopaminergic transmission in the rat cerebral cortex: effects of stress, anxiolytic and anxiogenic drugs. Pharmacol Ther. 1990;48:121–42.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Nutt DJ, Malizia AL. New insights into the role of the GABA (A)-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry. 2001;179:390–4.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Barnes NM, Costall B, Kelly ME, Murphy DA, Naylor RJ. Anxiolytic-like action by DuP753, a non-peptide angiotensin II receptor antagonist. Neuroreport. 1990;1:20–1.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Kaiser FC, Palmer GC, Wallace AV, Carr RD, Fraser-Rae L, Hallam C. Antianxiety properties of the angiotensin II antagonist, Dup753, in the rat using the elevated plus-maze. Neuroreport. 1992;3:922–4.

    CAS  PubMed  CrossRef  Google Scholar 

  65. Overmier JB, Murison R. Anxiety and helplessness in the face of stress predisposes, precipitates, and sustains gastric ulceration. Behav Brain Res. 2000;110:161–74.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Andrade TG, Graeff FG. Effect of electrolytic and neurotoxic lesions of the median raphe nucleus on anxiety and stress. Pharmacol Biochem Behav. 2001;70(1):1–14.

    CAS  PubMed  CrossRef  Google Scholar 

  67. Tuncel N, Erkasap N, Sahinturk V, Ak DD, Tuncel M. The protective effect of vasoactive intestinal peptide (VIP) on stress-induced gastric ulceration in rats. Ann N Y Acad Sci. 1998;865:309–22.

    CAS  PubMed  CrossRef  Google Scholar 

  68. Yelken B, Dorman T, Erkasap S, Dundar E, Tanriverdi B. Clonidine pretreatment inhibits stress-induced gastric ulcer in rats. Anesth Analg. 1999;89(1):159–62.

    CAS  PubMed  Google Scholar 

  69. Heinemann A, Sattler V, Jocic M, Wienen W, Holzer P. Effect of angiotensin II and telmisartan, an angiotensin1 receptor antagonist, on rat gastric mucosal blood flow. Aliment Pharmacol Ther. 1999;13(3):347–55.

    CAS  PubMed  CrossRef  Google Scholar 

  70. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996;97(8):1916–23.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  71. Senay CE, Levine RJ. Synergism between cold and restraint for rapid production of stress ulcer in rats. Proc Soc Exp Biol Med. 1967;124:1221–3.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Filaterova LP, Filaretov AA, Makara GB. Corticosterone increase inhibits stress-induced gastric erosions in rats. Am J Physiol. 1998;274:G1024–30.

    Google Scholar 

  73. Nishimura Y, Ito T, Hoe K, Saavedra JM. Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors. Brain Res. 2000;871(1):29–38.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Hamaguchi M, Watanabe T, Higuchi K, Tominaga K, Fujiwara Y, Arakawa T. Mechanisms and roles of neutrophil infiltration in stress-induced gastric injury in rats. Dig Dis Sci. 2001;46(12):2708–15.

    CAS  PubMed  CrossRef  Google Scholar 

  75. Liu W, Okajima K, Murakami K, Harada N, Isobe H, Irie T. Role of neutrophil elastase in stress-induced gastric mucosal injury in rats. J Lab Clin Med. 1998;132(5):432–9.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Ruiz-Ortega M, Ruperez M, Lorenzo O, Esteban V, Blanco J, Mezzano S, et al. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int Suppl. 2002;82:S12–22.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Tamarat R, Silvestre JS, Durie M, Levy BI. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. Lab Invest. 2002;82(6):747–56.

    CAS  PubMed  CrossRef  Google Scholar 

  78. Nakamura A, Johns EJ, Imaizumi A, Niimi R, Yanagawa Y, Kohsaka T. Role of angiotensin II-induced cAMP in mesangial TNF-alpha production. Cytokine. 2002;19(1):47–51.

    CAS  PubMed  CrossRef  Google Scholar 

  79. Kalra D, Sivasubramanian N, Mann DL. Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C-dependent pathway. Circulation. 2002;105(18):2198–205.

    CAS  PubMed  CrossRef  Google Scholar 

  80. Strawn WB, Dean RH, Ferrario CM. Novel mechanisms linking angiotensin II and early atherogenesis. J Renin Angiotensin Aldosterone Syst. 2000;1(1):11–7.

    CAS  PubMed  CrossRef  Google Scholar 

  81. Sasamura H, Nakazato Y, Hayashida T, Kitamura Y, Hayashi M, Saruta T. Regulation of vascular type 1 angiotensin receptors by cytokines. Hypertension. 1997;30(1 Pt 1):35–41.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Bucher M, Ittner KP, Hobbhahn J, Taeger K, Kurtz A. Downregulation of angiotensin II type 1 receptors during sepsis. Hypertension. 2001;38(2):177–82.

    CAS  PubMed  CrossRef  Google Scholar 

  83. Cowling RT, Gurantz D, Peng J, Dillmann WH, Greenberg BH. Transcription factor NF-kappa B is necessary for up-regulation of type 1 angiotensin II receptor mRNA in rat cardiac fibroblasts treated with tumor necrosis factor-alpha or interleukin-1 beta. J Biol Chem. 2002;277(8):5719–24.

    CAS  PubMed  CrossRef  Google Scholar 

  84. Peng J, Gurantz D, Tran V, Cowling RT, Greenberg BH. Tumor necrosis factor-alpha-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis. Circ Res. 2002;91(12):1119–26.

    CAS  PubMed  CrossRef  Google Scholar 

  85. Khoury NM, Marvar PJ, Gillespie CF, Wingo A, Schwartz A, Bradley B, et al. The renin-angiotensin pathway in posttraumatic stress disorder: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are associated with fewer traumatic stress symptoms. J Clin Psychiatry. 2012;73(6):849–55.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  86. Dole VP, Nyswander ME. Rehabilitation of heroin addicts after blockade with methadone. N Y State J Med. 1966;66(15):2011–7.

    CAS  PubMed  Google Scholar 

  87. Kreek MJ. Effects of opiates, opioid antagonists and cocaine on the endogenous opioid system: clinical and laboratory studies. NIDA Res Monogr. 1992;119:44–8.

    CAS  PubMed  Google Scholar 

  88. Kreek MJ, Koob GF. Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend. 1998;51(1–2):23–47.

    CAS  PubMed  CrossRef  Google Scholar 

  89. Piazza PV, Le Moal M. The role of stress in drug-self administration. Trends Pharmacol Sci. 1998;19:67–74.

    CAS  PubMed  CrossRef  Google Scholar 

  90. Piazza PV, Deroche V, Deminiere JM, Maccari S, Le Moal M, Simon H. Corticosterone in the range of stress-induced levels possesses reinforcing properties: implications for sensation-seeking behaviors. Proc Natl Acad Sci USA. 1993;90(24):11738–42.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  91. Goeders NE. Stress, the hypothalamic-pituitary-adrenal axis, and vulnerability to drug abuse. NIDA Res Monogr. 1998;169:83–104.

    CAS  PubMed  Google Scholar 

  92. Hosseini M, Sharifi MR, Alaei H, Shafei MN, Karimooy HA. Effects of angiotensin II and captopril on rewarding properties of morphine. Indian J Exp Biol. 2007;45(9):770–7.

    CAS  PubMed  Google Scholar 

  93. Paz MC, Assis MA, Cabrera RJ, Cancela LM, Bregonzio C. The AT angiotensin II receptor blockade attenuates the development of amphetamine-induced behavioral sensitization in a two-injection protocol. Synapse. 2011;65(6):505–12.

    CAS  PubMed  CrossRef  Google Scholar 

  94. Paz MC, Marchese NA, Cancela LM, Bregonzio C. Angiotensin II AT(1) receptors are involved in neuronal activation induced by amphetamine in a two-injection protocol. Biomed Res Int. 2013;2013:534817.

    PubMed Central  PubMed  Google Scholar 

  95. Watanabe MA, Kucenas S, Bowman TA, Ruhlman M, Knuepfer MM. Angiotensin II and CRF receptors in the central nucleus of the amygdala mediate hemodynamic response variability to cocaine in conscious rats. Brain Res. 2010;1309:53–65.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  96. Brown DC, Steward LJ, Ge J, Barnes NM. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol. 1996;118(2):414–20.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  97. Gelband CH, Sumners C, Lu D, Raizada MK. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. Regul Pept. 1998;73(3):141–7.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Nahmod VE, Finkielman S, Benarroch EE, Pirola CJ. Angiotensin regulates release and synthesis of serotonin in brain. Science. 1978;202(4372):1091–3.

    CAS  PubMed  CrossRef  Google Scholar 

  99. Barnes KL, DeWeese DM, Andresen MC. Angiotensin potentiates excitatory sensory synaptic transmission to medial solitary tract nucleus neurons. Am J Physiol Regul Integr Comp Physiol. 2003;284(5):R1340–53.

    CAS  PubMed  CrossRef  Google Scholar 

  100. Oz M, Yang KH, O’Donovan MJ, Renaud LP. Presynaptic angiotensin II AT1 receptors enhance inhibitory and excitatory synaptic neurotransmission to motoneurons and other ventral horn neurons in neonatal rat spinal cord. J Neurophysiol. 2005;94(2):1405–12.

    CAS  PubMed  CrossRef  Google Scholar 

  101. Mooney RD, Zhang Y, Rhoades RW. Effects of angiotensin II on visual neurons in the superficial laminae of the hamster’s superior colliculus. Vis Neurosci. 1994;11(6):1163–73.

    CAS  PubMed  CrossRef  Google Scholar 

  102. Xiong HG, Marshall KC. Angiotensin II modulation of glutamate excitation of locus coeruleus neurons. Neurosci Lett. 1990;118(2):261–4.

    CAS  PubMed  CrossRef  Google Scholar 

  103. Albrecht D, Broser M, Kruger H, Bader M. Effects of angiotensin II and IV on geniculate activity in nontransgenic and transgenic rats. Eur J Pharmacol. 1997;332(1):53–63.

    CAS  PubMed  CrossRef  Google Scholar 

  104. Clark JJ, Bernstein IL. Reciprocal cross-sensitization between amphetamine and salt appetite. Pharmacol Biochem Behav. 2004;78(4):691–8.

    CAS  PubMed  CrossRef  Google Scholar 

  105. Acerbo MJ, Johnson AK. Behavioral cross-sensitization between DOCA-induced sodium appetite and cocaine-induced locomotor behavior. Pharmacol Biochem Behav. 2011;98(3):440–8.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  106. Paz MC, Marchese NA, Stroppa MM, Gerez de Burgos NM, Imboden H, Baiardi G, et al. Involvement of the brain renin-angiotensin system (RAS) in the neuroadaptive responses induced by amphetamine in a two-injection protocol. Behav Brain Res. 2014;272C:314–23.

    CrossRef  CAS  Google Scholar 

  107. Dobrakovova M, Oprsalova Z, Mikulaj L, Kvetnansky R, Murgas K, Lichardus B. Hypertension induced by repeated stress: possible participation of sympathetic-adrenomedullary catecholamines. Endocrinol Exp. 1984;18(3):169–76.

    CAS  PubMed  Google Scholar 

  108. Eliot RS. Stress and cardiovascular disease. Eur J Cardiol. 1977;5(2):97–104.

    CAS  PubMed  Google Scholar 

  109. Engler MB, Engler MM. Assessment of the cardiovascular effects of stress. J Cardiovasc Nurs. 1995;10(1):51–63.

    CAS  PubMed  CrossRef  Google Scholar 

  110. Ito T, Yamakawa H, Bregonzio C, Terron JA, Falcon-Neri A, Saavedra JM. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke. 2002;33(9):2297–303.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Bregonzio Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bregonzio, C., de los Angeles Marinzalda, M., Baiardi, G.C. (2015). Role of the Neuropeptide Angiotensin II in Stress and Related Disorders. In: Gargiulo, P., Arroyo, H. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-319-17103-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17103-6_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17102-9

  • Online ISBN: 978-3-319-17103-6

  • eBook Packages: MedicineMedicine (R0)