Skip to main content

High Temperature PEM Fuel Cell Systems, Control and Diagnostics

  • Chapter
High Temperature Polymer Electrolyte Membrane Fuel Cells

Abstract

Various system topologies are available when it comes to designing high temperature PEM fuel cell systems. Very simple system designs are possible using pure hydrogen, and more complex system designs present themselves when alternative fuels are desired, using reformer systems. The use of reformed fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components in such systems allow the development of both simple linear and also advanced fuzzy logic and neural network controllers able to adapt system performance to the ever changing conditions which the systems operate in over their entire lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ouzounidou M, Ipsakis D, Voutetakis S et al (2009) A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: experimental and simulation studies. Energy 34:733–1743

    Article  Google Scholar 

  2. Olah GA, Goeppert A (2009) Prakash, beyond oil and gas: the methanol economy, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  3. Iulianellia A, Ribeirinha P, Mendes A et al (2014) Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review. Renew Sustain Energy Rev 29:355–368

    Article  Google Scholar 

  4. Ogden JM, Steinbugler MM, Kreutz TG (2009) A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development. J Power Sources 79:143–168

    Article  Google Scholar 

  5. Bromberg L, Cheng WK (2010) Methanol as an alternative transportation fuel in the U.S.: options for sustainable and/or energy-secure transportation. Final report presented at Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  6. Cifre PG, Badr O (2007) Renewable hydrogen utilisation for the production of methanol. Energ Convers Manage 48:519–527

    Article  Google Scholar 

  7. Sayah AK, Sayah AK (2011) Wind-hydrogen utilization for methanol production: an economy assessment in Iran. Renew Sustain Energy Rev 15:3570–3574

    Article  Google Scholar 

  8. Mignard D, Sahibzada M, Duthie JM et al (2003) Methanol synthesis from flue-gas CO2 and renewable electricity: a feasibility study. Int J Hydrog Energy 28:455–464

    Article  Google Scholar 

  9. Olah GA, Goeppert A, Prakash GS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498

    Article  Google Scholar 

  10. Araya SS, Andreasen SJ, Nielsen HV et al (2012) Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell. Int J Hydrog Energy 37:18231–18242

    Article  Google Scholar 

  11. Chen C-Y, Lai W-H, Chen Y-K et al (2014) Characteristic studies of a PBI/H3PO4 high temperature membrane PEMFC under simulated reformate gases. Int J Hydrog Energy 39(25):13757–13762

    Article  Google Scholar 

  12. Wang C-P, Chu H-S, Yan Y-Y et al (2007) Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells. J Power Sources 170:235–241

    Article  Google Scholar 

  13. Andreasen SJ, Vang JR, Kær SK (2011) High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy. Int J Hydrog Energy 36:9815–9830

    Article  Google Scholar 

  14. Authayanun S, Saebea D, Patcharavorachot Y et al (2014) Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems. Energy 68:989–997

    Article  Google Scholar 

  15. Nieto-Márquez A, Sánchez D, Miranda-Dahdal A et al (2013) Autothermal reforming and water–gas shift double bed reactor for H2 production from ethanol. Chem Eng Process 74:14–18

    Article  Google Scholar 

  16. Choi Y, Stenger HG (2003) Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. J Power Sources 124:432–439

    Article  Google Scholar 

  17. Ilinich O, Ruettinger W, Liu X et al (2007) Cu–Al2O3–CuAl2O4 water–gas shift catalyst for hydrogen production in fuel cell applications: mechanism of deactivation under start–stop operating conditions. J Catal 247:112–118

    Article  Google Scholar 

  18. Chen W-H, Hsieh T-C, Jiang T-L (2008) An experimental study on carbon monoxide conversion and hydrogen generation from water gas shift reaction. Energy Convers Manag 49:2801–2808

    Article  Google Scholar 

  19. Reddy EH, Jayanti S (2012) Thermal management strategies for a 1 kWe stack of a high temperature proton exchange membrane fuel cell. Appl Therm Eng 48:465–475

    Article  Google Scholar 

  20. Andreasen SJ, Kær SK (2007) 400W high temperature PEM fuel cell stack test. Electrochem Soc Trans 5:197–207

    Google Scholar 

  21. Kolb G, Keller S, Tiemann D et al (2012) Design and operation of a compact microchannel 5 kWel, net methanol steam reformer with novel Pt/In2O3 catalyst for fuel cell applications. Chem Eng J 207–208:388–402

    Article  Google Scholar 

  22. Pan L, Wang S (2005) Modeling of a compact plate-fin reformer for methanol steam reforming in fuel cell systems. Chem Eng J 108:51–58

    Article  Google Scholar 

  23. Lindström B, Pettersson LJ (2003) Development of a methanol fuelled reformer for fuel cell applications. J Power Sources 118:71–78

    Article  Google Scholar 

  24. Schuessler M, Portscher M, Limbeck U (2003) Monolithic integrated fuel processor for the conversion of liquid methanol. Cata Today 79–80:511–520

    Article  Google Scholar 

  25. Serenergy H3-350 Datasheet (2014). http://serenergy.com/wp-content/uploads/2013/04/H3-350-datasheet_v2.0-0313.pdf. Accessed 2014

  26. Supra J, Janßen H, Lehnert W et al (2013) Temperature distribution in a liquid-cooled HT-PEFC stack. Int J Hydrog Energy 38:1943–1951

    Article  Google Scholar 

  27. Reddy EH, Monder DS, Jayanti S (2013) Parametric study of an external coolant system for a high temperature polymer electrolyte membrane fuel cell. Appl Therm Eng 58:155–164

    Article  Google Scholar 

  28. Weiss-Ungethüm J, Bürger I, Schmidt N et al (2014) Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank. Int J Hydrog Energy 39:5931–5941

    Article  Google Scholar 

  29. Scholta J, Messerschmidt M, Jörissen L et al (2009) Externally cooled high temperature polymer electrolyte membrane fuel cell stack. J Power Sources 190:83–85

    Article  Google Scholar 

  30. Scholta J, Zhang W, Jörissen L et al (2008) Conceptual design for an externally cooled HT-PEMFC stack. Electrochem Soc Trans 12:113–118

    Google Scholar 

  31. Dudfield CD, Chen R, Adcock PL (2001) A carbon monoxide PROX reactor for PEM fuel cell automotive application. Int J Hydrog Energy 26:763–775

    Article  Google Scholar 

  32. Duratherm Heat Transfer Fluids. http://www.heat-transfer-fluid.com/. Accessed 8 June 2014

  33. Paratherm Heat Transfer Fluids. http://www.paratherm.com/. Accessed 8 June 2014

  34. Andreasen SJ, Kær SK (2008) Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks. Int J Hydrog Energy 33:4655–4664

    Article  Google Scholar 

  35. Wiethege C, Samsun R, Peters R et al (2013) Start-up of HT-PEFC systems operating with diesel and kerosene for APU applications. Fuel Cells 14:266–276

    Article  Google Scholar 

  36. Rasheed RKA, Ehteshami SMM, Chan SH (2014) Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process. Int J Hydrog Energy 39:2246–2260

    Article  Google Scholar 

  37. Samsun RC, Pasel J, Janßen H et al (2014) Design and test of a 5 kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene. Appl Energy 114:238–249

    Article  Google Scholar 

  38. Maximini M, Engelhardt P, Brenner M et al (2014) Fast start-up of a diesel fuel processor for PEM fuel cells. Int J Hydrog Energy 39(31):18154–18163

    Article  Google Scholar 

  39. Song T-W, Choi K-H, Kim J-R et al (2011) Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells. J Power Sources 196:4671–4679

    Article  Google Scholar 

  40. Supra J, Janßen H, Lehnert W et al (2013) Design and experimental investigation of a heat pipe supported external cooling system for HT-PEFC stacks. J Fuel Cell Sci Technol 10(5):051002(1–7)

    Article  Google Scholar 

  41. Peters R, Düsterwald HG, Höhlein B (2000) Investigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell powered passenger car. J Power Sources 86:507–514

    Article  Google Scholar 

  42. Schmidt TJ, Baurmeister J (2008) Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. J Power Sources 176:428–434

    Article  Google Scholar 

  43. Korsgaard AR, Refshauge R, Nielsen MP et al (2006) Experimental characterization and modeling of commercial PBI-based MEA performance. J Power Sources 162:239–245

    Article  Google Scholar 

  44. Andreasen SJ (2009) Design and control of high temperature PEM fuel cell system. Ph.D. Dissertation, Aalborg

    Google Scholar 

  45. Maier W, Arlt T, Wippermann K et al (2011) Investigation of HT-PEFCs by means of synchrotron X-ray radiography and electrochemical impedance spectroscopy. Electrochem Soc Trans 41:1413–1422

    Google Scholar 

  46. Gu T, Shimpalee S, Van Zee JW et al (2010) A study of water adsorption and desorption by a PBI-H3PO4 membrane electrode assembly. J Power Sources 195:8194–8197

    Article  Google Scholar 

  47. Galbiati S, Baricci A, Casalegno A et al (2012) Experimental study of water transport in a polybenzimidazole-based high temperature PEMFC. Int J Hydrog Energy 37:2462–2469

    Article  Google Scholar 

  48. Li Q, He R, Berg RW et al (2004) Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ion 168:177–185

    Article  Google Scholar 

  49. Bezmalinović D, Strahl S, Roda V et al (2014) Water transport study in a high temperature proton exchange membrane fuel cell stack. Int J Hydrog Energy 39:10627–10640

    Article  Google Scholar 

  50. Nielsen M, Alberico E, Baumann W et al (2013) Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495:85–89

    Article  Google Scholar 

  51. Yu KMK, Tong W, West A et al (2012) Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nat Commun 3:1230

    Article  Google Scholar 

  52. Segal SR, Anderson KB, Carrado KA et al (2002) Low temperature steam reforming of methanol over layered double hydroxide-derived catalysts. Appl Catal A 231:215–226

    Article  Google Scholar 

  53. Ma Y, Guan G, Shi C et al (2014) Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts. Int J Hydrog Energy 39:258–266

    Article  Google Scholar 

  54. Wang C, Boucher M, Yang M et al (2014) ZnO-modified zirconia as gold catalyst support for the low-temperature methanol steam reforming reaction. Appl Catal B 154–155:142–152

    Article  Google Scholar 

  55. Singdeo D, Dey T, Ghosh PC (2011) Modelling of start-up time for high temperature polymer electrolyte fuel cells. Energy 36:6081–6089

    Article  Google Scholar 

  56. Andreasen SJ, Vang JR, Kær SK (2010) Experimental analysis of the effects of CO and CO2 on high temperature PEM fuel cell performance using electrochemical impedance spectroscopy. Poster session presented at 2nd CARISMA International Conference on Progress in MEA Materials for High Medium and High Temperature Polymer Electrolyte Fuel Cells, France

    Google Scholar 

  57. Andreasen SJ, Ashworth L, Menjón Remón IN et al (2008) Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle. Int J Hydrog Energy 33:7137–7145

    Article  Google Scholar 

  58. Andreasen SJ, Kær SK, Sahlin SL (2013) Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system. Int J Hydrog Energy 38:1676–1684

    Article  Google Scholar 

  59. Jyh-Shing RJ (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  60. Justesen KK, Andreasen SJ, Shaker HR et al (2013) Gas composition modeling in a reformed methanol fuel cell system using adaptive neuro-fuzzy inference systems. Int J Hydrog Energy 38:10577–10584

    Article  Google Scholar 

  61. Justesen KK, Andreasen SJ, Shaker HR (2014) Dynamic modeling of a reformed methanol fuel cell system using empirical data and adaptive neuro-fuzzy inference system models. J Fuel Cell Sci Technol 11:021004

    Article  Google Scholar 

  62. Zhu Y, Zhu WH, Tatarchuk BJ (2014) Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy. J Power Sources 256:250–257

    Article  Google Scholar 

  63. Andreasen SJ, Jespersen JL, Schaltz E et al (2009) Characterisation and modelling of a high temperature PEM fuel cell stack using electrochemical impedance spectroscopy. Fuel Cells 9:463–473

    Article  Google Scholar 

  64. Vang JR, Andreasen SJ, Araya SS et al (2014) Comparative study of the break in process of post doped and sol–gel high temperature proton exchange membrane fuel cells. Int J Hydrog Energy 39:14959–14968

    Article  Google Scholar 

  65. Galbiati S, Baricci A, Casalegno A et al (2012) On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid. Int J Hydrog Energy 37:14475–14481

    Article  Google Scholar 

  66. Boaventura M, Mendes A (2010) Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes. Int J Hydrog Energy 35:11649–11660

    Article  Google Scholar 

  67. Thomas S, Lee SC, Sahu AK et al (2014) Online health monitoring of a fuel cell using total harmonic distortion analysis. Int J Hydrog Energy 39:4558–4565

    Article  Google Scholar 

  68. Narjjiss A, Depernet D, Candusso D (2008) Online diagnosis of PEM fuel cell. Proceedings Power Electronics and Motion Control Conference EPE-PEMC, pp 734–739

    Google Scholar 

  69. Bidoggia B, Kær SK (2013) Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by complex impedance measurement: constant temperature stack characterization. Int J Hydrog Energy 38:4054–4066

    Article  Google Scholar 

  70. Andreasen SJ, Kær SK (2009) Dynamic model of the high temperature proton exchange membrane fuel cell stack temperature. J Fuel Cell Sci Technol 6:041006(1–8)

    Article  Google Scholar 

  71. Boaventura M, Sander H, Friedrich KA et al (2011) The influence of CO on the current density distribution of high temperature polymer electrolyte membrane fuel cells. Electrochim Acta 56:9467–9475

    Article  Google Scholar 

  72. Suzuki A, Oono Y, Williams MC et al (2012) Evaluation for sintering of electrocatalysts and its effect on voltage drops in high-temperature proton exchange membrane fuel cells (HT-PEMFC). Int J Hydrog Energy 37:18272–18289

    Article  Google Scholar 

  73. Qi Z, Buelte S (2006) Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells. J Power Sources 161:1126–1132

    Article  Google Scholar 

  74. Ye D, Gauthier E, Benziger JB et al (2014) Bulk and contact resistances of gas diffusion layers in proton exchange membrane fuel cells. J Power Sources 256:449–456

    Article  Google Scholar 

  75. Lobato J, Cañizares P, Rodrigo MA et al (2007) PBI-based polymer electrolyte membranes fuel cells: temperature effects on cell performance and catalyst stability. Electrochim Acta 52:3910–3920

    Article  Google Scholar 

  76. Zhai Y, Zhang H, Xing D et al (2007) The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test. J Power Sources 164:126–133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Juhl Andreasen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andreasen, S.J., Kær, S.K., Justesen, K.K., Sahlin, S.L. (2016). High Temperature PEM Fuel Cell Systems, Control and Diagnostics. In: Li, Q., Aili, D., Hjuler, H., Jensen, J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-17082-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17082-4_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17081-7

  • Online ISBN: 978-3-319-17082-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics