Advertisement

Abstract

As we developed a method of fundamental solutions in quasistatic poroelasticity in the previous chapter, this chapter is dedicated to the application of said method. First, we give some details on the implementation of the method for solving initial boundary value problems of quasistatic poroelasticity on the square (−1, 1)2. This introduces several method parameters which can be organized in three groups. Using several examples with different types of boundary conditions and different behavior, each group is investigated separately with regard to its influence on the performance of the method of fundamental solutions which is judged by approximation quality. Concentrating on well performing parameter method, we investigate the distribution of approximation errors in time and space. Next, we compare results using a sophisticated vs. a simple solution scheme for the resulting system of linear equations. This is followed by a comparison of results produced by the different methods of fundamental solutions developed in the previous chapter. Moreover, we briefly investigate whether a recently suggested variant of the method of fundamental solutions for time-dependent problems is applicable in quasistatic poroelasticity. The chapter is rounded out by a short discussion on the approximation of solutions with steeper gradients and an exemplary application of the method of fundamental solutions for an initial boundary value problem on the cube (−1, 1)3.

Keywords

Source Point Fundamental Solution Parameter Combination Initial Boundary Collocation Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    Abousleiman, Y., Cheng, A.H.D., Cui, L., Detournay, E., Roegiers, J.C.: Mandel’s problem revisited. Géotechnique 46, 187–195 (1996)CrossRefGoogle Scholar
  2. 8.
    Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem. 33, 1348–1361 (2009)MathSciNetCrossRefGoogle Scholar
  3. 11.
    Ansorge, R., Sonar, T.: Mathematical Models of Fluid Dynamics. Wiley, Weinheim (2009)CrossRefGoogle Scholar
  4. 16.
    Augustin, M., Caiazzo, A., Fiebach, A., Fuhrmann, J., John, V., Linske, A., Umla, R.: An assesment of discretizations for convection-dominated convection-diffusion equations. Comput. Method. Appl. Mech. Eng. 200, 3395–3409 (2011)CrossRefGoogle Scholar
  5. 24.
    Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227, 7003–7026 (2008)MathSciNetCrossRefGoogle Scholar
  6. 29.
    Bauer, F., Gutting, M., Lukas, M.A.: Evaluation of parameter choice methods for regularization of ill-posed problems in geomathematics. In: W. Freeden, Z. Nashed, T. Sonar (eds.) Handbook of Geomathematics, 2nd edn. Springer, New York (2015). Accepted for publicationGoogle Scholar
  7. 30.
    Bauer, F., Lukas, M.A.: Comparingparameter [sic] choice methods for regularization of ill-posed problems. Math. Comput. Simul. 81, 1795–1841 (2011)MathSciNetCrossRefGoogle Scholar
  8. 59.
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)MathSciNetCrossRefGoogle Scholar
  9. 60.
    Courant, R., Friedrichs, K., Lewy, H.: On partial difference equations of mathematical physics. IBM J. Res. Dev. 11, 215–234 (1967). Translated from German by Phyllis FoxMathSciNetCrossRefGoogle Scholar
  10. 61.
    Cui, L., Abousleiman, Y.: Time-dependent poromechanical response of saturated cylinders. J. Eng. Mech. 127, 391–398 (2001)CrossRefGoogle Scholar
  11. 101.
    Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)Google Scholar
  12. 119.
    Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14, 403–420 (1970)MathSciNetCrossRefGoogle Scholar
  13. 131.
    Hon, Y.C., Li, M.: A discrepancy principle for the source points location in using the MFS for solving the BHCP. Int. J. Comput. Method. 6, 181–197 (2009)MathSciNetCrossRefGoogle Scholar
  14. 143.
    Johansson, B.T., Lesnic, D., Reeve, T.: A method of fundamental solutions for two-dimensional heat conduction. Int. J. Comput. Math. 88, 1697–1713 (2011)MathSciNetCrossRefGoogle Scholar
  15. 157.
    Kincaid, D., Cheney, W.: Numerical Analysis – Mathematics of Scientific Computing. Brooks/Cole, Pacific Grove (1991)Google Scholar
  16. 168.
    Kurashige, M., Sato, K., Imai, K.: Mandel and Cryer problems of fluid-saturated foam with negative Poisson’s ratio. Acta Mech. 175, 25–43 (2005)CrossRefGoogle Scholar
  17. 171.
    LeVeque, R.J.: Lectures in mathematics, ETH Zürich. In: O.E. Lanford (ed.) Numerical Methods for Conversation Laws, 2nd edn. Birkhäuser, Basel (1992)CrossRefGoogle Scholar
  18. 185.
    Mandel, J.: Consolidation de Sols (Étude Mathématique). Géotechnique 3, 287–299 (1953)CrossRefGoogle Scholar
  19. 189.
    Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14, 638–650 (1977)MathSciNetCrossRefGoogle Scholar
  20. 190.
    Matlab: version R2013a. The MathWorks (2013)Google Scholar
  21. 203.
    Moler, C.: Cleve’s corner: professsor SVD. The MathWorks News & Notes (2006). Downloaded from http://www.mathworks.de/company/newsletters/articles/professor-svd.html. On 28 Feb 2014
  22. 212.
    Neumaier, A.: Solving ill-conditioned and singular linear systems: a tutorial on regularization. SIAM Rev. 40, 636–666 (1998)MathSciNetCrossRefGoogle Scholar
  23. 215.
    Ostermann, I.: Modeling heat transport in deep geothermal systems by radial basis functions. Ph.D. thesis, University of Kaiserslautern, Geomathematics Group (2011)Google Scholar
  24. 216.
    Ostermann, I.: Three-dimensional modeling of heat transport in deep hydrothermal reservoirs. Int. J. Geomath. 2, 37–68 (2011)MathSciNetCrossRefGoogle Scholar
  25. 221.
    Phillips, P.J.: Finite element method in linear poroelasticity: theoretical and computational results. Ph.D. thesis, University of Texas, Austin (2005)Google Scholar
  26. 225.
    Phillips, P.J., Wheeler, M.F.: Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach. Comput. Geosci. 13, 5–12 (2009)CrossRefGoogle Scholar
  27. 228.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Fortran Numerical Recipes, 2nd edn. Cambridge University Press, Cambridge (2001)Google Scholar
  28. 247.
    Schanz, M.: Application of 3D time domain boundary element formulation to wave propagation in poroelastic solids. Eng. Anal. Bound. Elem. 25, 363–376 (2001)CrossRefGoogle Scholar
  29. 262.
    Smyrlis, Y.S.: Applicability and applications of the method of fundamental solutions. Math. Comput. 78, 1399–1434 (2009)MathSciNetCrossRefGoogle Scholar
  30. 266.
    Smyrlis, Y.S., Karageorghis, A.: Efficient implementation of the MFS: the three scenarios. J. Comput. Appl. Math. 227, 83–92 (2009)MathSciNetCrossRefGoogle Scholar
  31. 267.
    Smyrlis, Y.S., Karageorghis, A.: The under-determined version of the MFS: taking more sources than collocation points. Appl. Numer. Math. 60, 337–357 (2010)MathSciNetCrossRefGoogle Scholar
  32. 268.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Springer, New York (1993). Translated from German by R. Bartels, W. Gautschi, and C. WitzgallGoogle Scholar
  33. 269.
    Strang, G.: Linear Algebra and Its Applications. Brooks/Cole, Toronto (1988)Google Scholar
  34. 270.
    Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005)MathSciNetCrossRefGoogle Scholar
  35. 283.
    Visual Numerics (ed.): IMSL User Manual. Rogue Wave Software, Boulder, Colorado (2010)Google Scholar
  36. 288.
    Wen, P.H., Liu, Y.W.: The fundamental solution of poroelastic plate saturated by fluid and its applications. Int. J. Numer. Anal. Method. Geomech. 34, 689–709 (2010)Google Scholar
  37. 293.
    Yin, S.: Geomechanics-reservoir modeling by displacement discontinuity-finite element method. Ph.D. thesis, University of Waterloo (2008)Google Scholar
  38. 294.
    Yin, S., Rothenburg, L., Dusseault, M.B.: 3D coupled displacement discontinuity and finite element analysis of reservoir behavior during production in semi-infinite domain. Transp. Porous Media 65, 425–441 (2006)CrossRefGoogle Scholar
  39. 298.
    Young, D.L., Fan, C.M., Hu, S.P., Atluri, S.N.: The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations. Eng. Anal. Bound. Elem. 32, 395–412 (2008)CrossRefGoogle Scholar
  40. 300.
    Young, D.L., Tsai, C.C., Murugesan, K., Fan, C.M., Chen, C.W.: Time-dependent fundamental solutions for homogeneous diffusion problems. Eng. Anal. Bound. Elem. 28, 1463–1473 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matthias Albert Augustin
    • 1
  1. 1.AG GeomathematikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations