# Methods of Fundamental Solutions in Poroelasticity

• Matthias Albert Augustin
Part of the Lecture Notes in Geosystems Mathematics and Computing book series

## Abstract

Although single- and double-layer potentials can be used to reduce the dimension of a problem, this comes at the prize of having to deal with integrals over the boundary of a domain. Moreover, these boundary integrals are singular. In order to remove the singularity, we use an approach by Runge which shifts integration towards the boundary of a larger domain. Based on this approach, we introduce the method of fundamental solutions in which a solution to a given partial differential equation is approximated as a linear combination of fundamental solutions to said equations with singularities at suitable points. Subsequent to a short historical overview on the method of fundamental solutions, we show how such a method can be formulated in the context of quasistatic poroelasticity. The main goal of this chapter is to prove density of suitable sets of fundamental solutions in a certain space of solutions to the quasistatic equations of poroelasticity. In a first step, this is done under the assumption of vanishing initial conditions. In order to allow for non-vanishing initial conditions, density results for the method of fundamental solutions in the context of the heat equation are used. This leads to an alternative solution scheme which is also based on the method of fundamental solutions.

## Keywords

Fundamental Solution Heat Equation Laplace Equation Collocation Point Density Result
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 4.
Aleksidze, M.A.: On approximation solutions of a certain mixed boundary value problem in the theory of harmonic functions. Differ. Equ. 2, 515–518 (1966)Google Scholar
2. 8.
Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem. 33, 1348–1361 (2009)
3. 9.
Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to the calculation of eigensolutions for 2D plates. Int. J. Numer. Method. Eng. 77, 177–194 (2009)
4. 10.
Alves, C.J.S., Silvestre, A.L.: Density results using Stokeslets and a method of fundamental solutions for the Stokes equations. Eng. Anal. Bound. Elem. 28, 1245–1252 (2004)
5. 12.
António, J., Tadeu, A., Godinho, L.: A Three-dimensional acoustics model using the method of fundamental solutions. Eng. Anal. Bound. Elem. 32, 525–531 (2008)
6. 14.
Augustin, M.: On the role of poroelasticity for modeling of stress fields in geothermal reservoirs. Int. J. Geomath. 3, 67–93 (2012)
7. 17.
Augustin, M., Freeden, W., Gerhards, C., Möhringer, S., Ostermann, I.: Mathematische Methoden in der Geothermie. Math. Semesterber. 59, 1–28 (2012)
8. 22.
Balakrishnan, K., Ramachandran, P.A.: The method of fundamental solutions for linear diffusion-reaction equations. Math. Comput. Model. 31, 221–237 (2000)
9. 24.
Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227, 7003–7026 (2008)
10. 40.
Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22, 644–669 (1985)
11. 41.
Browder, F.E.: Approximation by solutions of partial differential equations. Am. J. Math. 84, 134–160 (1962)
12. 43.
Chantasiriwan, S.: Methods of fundamental solutions for time-dependent heat conduction problems. Int. J. Numer. Method. Eng. 66, 147–165 (2006)
13. 44.
Chantasiriwan, S., Johansson, B.T., Lesnic, D.: The method of fundamental solutions for free surface Stefan problems. Eng. Anal. Bound. Elem. 33, 529–538 (2009)
14. 45.
Chen, C.S., Karageorghis, A., Smyrlis, Y.S. (eds.): The method of fundamental solutions – a meshless method. Dynamic Publishers, Atlanta (2008)
15. 46.
Chen, C.S., Rashed, Y.F., Golberg, M.A.: A Mesh-Free Method for Linear Diffusion Equations. Numer. Heat Transf. B 33, 469–486 (1998)
16. 47.
Chen, C.W., Young, D.L., Tsai, C.C., Murugesan, K.: The method of fundamental solutions for inverse 2D Stokes problems. Comput. Mech. 37, 2–14 (2005)
17. 50.
Chen, J.T., Wu, C.S., Lee, Y.T., Chen, K.H.: On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations. Comput. Math. Appl. 53, 851–879 (2007)
18. 57.
Costabel, M.: Boundary integral operators for the heat equation. Integral Equ. Operat. Theory 13, 498–552 (1990)
19. 74.
Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)
20. 75.
Fairweather, G., Karageorghis, A., Martin, P.A.: The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Bound. Elem. 27, 759–769 (2003)
21. 76.
Fam, G.S.A., Rashed, Y.F.: The method of fundamental solutions applied to 3d structures with body forces using particular solutions. Comput. Mech. 36, 245–254 (2005)
22. 79.
Freeden, W.: On the approximation of external gravitational potential with closed systems of (trial) functions. Bull. Géod. 54, 1–20 (1980)
23. 80.
Freeden, W.: Least squares approximation by linear combination of (multi-)poles. Report 344, The Ohio State University, Departement of Geodetic Science and Surveying, Columbus (1983)Google Scholar
24. 89.
Freeden, W., Kersten, H.: A constructive approximation theorem for the oblique derivative problem in potential theory. Math. Method. Appl. Sci. 3, 104–114 (1981)
25. 91.
Freeden, W., Michel, V.: Multiscale Potential Theory with Applications to Geoscience. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2004)
26. 101.
Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)
27. 116.
Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: M.A. Golberg (ed.) Boundary Integral Methods – Numerical and Mathematical Aspects, chap. 4, pp. 103–176. WIT Press, Southampton (1998)Google Scholar
28. 120.
Gorzelańczyk, P., Kołodziej, J.A.: Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods. Eng. Anal. Bound. Elem. 32, 64–75 (2008)
29. 121.
Grothaus, M., Raskop, T.: Limit formulae and jump relations of potential theory in Sobolev spaces. Int. J. Geomath. 1, 51–100 (2010)
30. 122.
Gu, M.H., Fan, C.M., Young, D.L.: The method of fundamental solutions for the multi-dimensional wave equations. J. Mar. Sci. Technol. 19, 586–595 (2011)Google Scholar
31. 124.
Guimaraes, S., Telles, J.C.F.: The method of fundamental solutions for fracture mechanics – Reissner’s plate application. Eng. Anal. Bound. Elem. 33, 1152–1160 (2009)
32. 129.
Herrera, I.: Trefftz method: a general theory. Numer. Method. Partial Differ. Equ. 16, 561–580 (2000)
33. 131.
Hon, Y.C., Li, M.: A discrepancy principle for the source points location in using the MFS for solving the BHCP. Int. J. Comput. Method. 6, 181–197 (2009)
34. 132.
Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 256. Springer, Berlin (1983)Google Scholar
35. 133.
Hu, S.P., Fan, C.M., Chen, C.W., Young, D.L.: Method of fundamental solutions for Stokes’ first and second problems. J. Mech. 21, 25–31 (2005)
36. 137.
Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)Google Scholar
37. 140.
Johansson, B.T., Lesnic, D.: A method of fundamental solutions for transient heat conduction. Eng. Anal. Bound. Elem. 32, 697–703 (2008)
38. 141.
Johansson, B.T., Lesnic, D.: A method of fundamental solutions for transient heat conduction in layered material. Eng. Anal. Bound. Elem. 33, 1362–1367 (2009)
39. 142.
Johansson, B.T., Lesnic, D., Reeve, T.: A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl. Math. Model. 35, 4367–4378 (2011)
40. 143.
Johansson, B.T., Lesnic, D., Reeve, T.: A method of fundamental solutions for two-dimensional heat conduction. Int. J. Comput. Math. 88, 1697–1713 (2011)
41. 144.
Johnson, R.: A priori estimates and unique continuation theorems for second order parabolic equations. Trans. Am. Math. Soc. 158, 167–177 (1971)
42. 145.
Johnston, R.L., Fairweather, G.: The method of fundamental solutions for problems in potential flow. Appl. Math. Model. 8, 265–270 (1984)
43. 147.
Karageorghis, A., Fairweather, G.: The method of fundamental solutions for the numerical solution of the biharmonic equation. J. Comput. Phys. 69, 434–459 (1987)
44. 148.
Karageorghis, A., Fairweather, G.: The method of fundamental solutions for axisymmetric elasticity problems. Comput. Mech. 25, 524–532 (2000)
45. 149.
Karageorghis, A., Poullikkas, A., Berger, J.R.: Stress intensity factor computation using the method of fundamental solutions. Comput. Mech. 37, 445–454 (2006)
46. 150.
Karageorghis, A., Smyrlis, Y.S., Tsangaris, T.: A matrix decomposition MFS algorithm for certain linear elasticity problems. Numer. Algorithm. 43, 123–149 (2006)
47. 151.
Katsurada, M.: A mathematical study of the charge simulation method II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 135–162 (1989)
48. 154.
Katsurada, M., Okamoto, H.: A mathematical study of the charge simulation method I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35, 507–518 (1988)
49. 155.
Katsurada, M., Okamoto, H.: The collocation points of the fundamental solution method for the potential problem. Comput. Math. Appl. 31, 123–137 (1996)
50. 158.
Kita, E., Kamiya, N.: Trefftz method: an overview. Adv. Eng. Softw. 24, 3–12 (1995)
51. 159.
Kitagawa, T.: On the numerical stability of the method of fundamental solution applied to the Dirichlet problem. Jpn. J. Appl. Math. 5, 123–133 (1988)
52. 160.
Kitagawa, T.: Asymptotic stability of the fundamental solution method. J. Comput. Appl. Math. 38, 263–269 (1991)
53. 162.
Kondapalli, P.S., Shippy, D.J., Fairweather, G.: Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions. J. Acoust. Soc. Am. 91, 1844–1854 (1992)
54. 163.
Kupradze, V.D.: A method for the approximate solution of limiting problems in mathematical physics. USSR Comput. Math. Math. Phys. 4, 199–205 (1964)
55. 167.
Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems. USSR Comput. Math. Math. Phys. 4, 82–126 (1964)
56. 172.
Li, X.: On convergence of the method of fundamental solutions for solving the Dirichlet problem of Poisson’s equation. Adv. Comput. Math. 23, 265–277 (2005)
57. 173.
Li, X.: Convergence of the method of fundamental solutions for Poisson’s equation on the unit sphere. Adv. Comput. Math. 28, 269–282 (2008)
58. 174.
Li, X.: Rate of convergence of the method of fundamental solutions and hyperinterpolation for modified Helmholtz equations on the unit ball. Adv. Comput. Math. 29, 393–413 (2008)
59. 187.
Marin, L.: An alternating iterative MFS algorithm for the Cauchy problem for the modified Helmholtz equation. Comput. Mech. 45, 665–677 (2010)
60. 189.
Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14, 638–650 (1977)
61. 195.
Cirne de Mederios, G., Partridge, P.W.: The method of fundamental solutions with dual reciprocity for thermoelasticity. In: International Workshop on Meshfree Methods, Lisbon (2003)Google Scholar
62. 196.
Cirne de Mederios, G., Partridge, P.W., Bandão, J.O.: The method of fundamental solutions with dual reciprocity for some problems in elasticity. Eng. Anal. Bound. Elem. 28, 453–461 (2004)Google Scholar
63. 199.
Mikhailov, V.P.: Partial Differential Equations. MIR Publishers, Moscow (1978)Google Scholar
64. 206.
Müller, C., Kersten, H.: Zwei Klassen vollständiger Funktionensysteme zur Behandlung der Randwertaufgaben der Schwingungsgleichung $$\bigtriangleup U + k^{2}U = 0$$. Math. Method. Appl. Sci. 2, 48–67 (1980)
65. 211.
Nennig, P., Perrey-Debain, E., Chazot, J.D.: The method of fundamental solutions for acoustic wave scattering by a single and a periodic array of poroelastic scatterers. Eng. Anal. Bound. Elem. 35, 1019–1028 (2011)
66. 226.
Poullikkas, A., Karageorghis, A., Georgiou, G.: The numerical solution of three-dimensional Signorini problems with the method of fundamental solutions. Eng. Anal. Bound. Elem. 25, 221–227 (2001)
67. 232.
Raskop, T.: The analysis of oblique boundary problems and limit formulae motivated by problems from geomathematics. Ph.D. thesis, University of Kaiserslautern, Functional Analysis and Stochastic Analysis Group (2009)Google Scholar
68. 233.
Redekop, D.: Fundamental solutions for the collation [sic] method in planar elastostatics. Appl. Math. Model. 6, 390–393 (1982)
69. 236.
Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. rein. angew. Math. 135, 1–6 (1909)
70. 238.
Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)
71. 239.
Runge, C.: Zur Theorie der eindeutigen analytischen Functionen. Acta Math. 6, 229–234 (1885)
72. 244.
Saut, J.C., Scheurer, B.: Unique continuation for some evolution equations. J. Differ. Equ. 66, 118–139 (1987)
73. 246.
Schaback, R.: Adaptive numerical solution of MFS systems. In: C.S. Chen, A. Karageorghis, Y.S. Smyrlis (eds.) The Method of Fundamental Solutions – A Meshless Method, pp. 1–27. Dynamic Publishers, Atlanta (2008)Google Scholar
74. 252.
Sensale-Rodriguez, B., Sensale, B., Leitão, V.M.A., Peixeiro, C.: Microstrip antenna analysis using the method of fundamental solutions. Int. J. Numer. Model.: Electron. Net. Device. Field. 21, 563–581 (2008)Google Scholar
75. 261.
Smyrlis, Y.S.: The method of fundamental solutions: a weighted least-squares approach. BIT Numer. Math. 46, 163–194 (2006)
76. 262.
Smyrlis, Y.S.: Applicability and applications of the method of fundamental solutions. Math. Comput. 78, 1399–1434 (2009)
77. 263.
Smyrlis, Y.S.: Density results with linear combinations of translates of fundamental solutions. J. Approx. Theory 161, 617–633 (2009)
78. 264.
Smyrlis, Y.S.: Mathematical foundation of the MFS for certain elliptic systems in linear elasticity. Numer. Math. 112, 319–340 (2009)
79. 265.
Smyrlis, Y.S., Karageorghis, A.: Numerical analysis of the MFS for certain harmonic problems. ESAIM: Math. Model. Numer. Anal. 38, 495–517 (2004)
80. 266.
Smyrlis, Y.S., Karageorghis, A.: Efficient implementation of the MFS: the three scenarios. J. Comput. Appl. Math. 227, 83–92 (2009)
81. 267.
Smyrlis, Y.S., Karageorghis, A.: The under-determined version of the MFS: taking more sources than collocation points. Appl. Numer. Math. 60, 337–357 (2010)
82. 274.
Trefftz, E.: Ein Gegenstück zum Ritzschen Verfahren. In: Proceedings of the Second International Congress on Applied Mechanics, Zürich (1926)Google Scholar
83. 275.
Tsai, C.C.: Solutions of slow Brinkman flows using the method of fundamental solutions. Int. J. Numer. Method. Fluid. 56, 927–940 (2008)
84. 276.
Tsai, C.C.: The method of fundamental solutions with dual reciprocity for three-dimensional thermoelasticity under arbitrary body forces. Eng. Comput. Int. J. Comput. Eng. Softw. 26, 229–244 (2009)
85. 277.
Tsai, C.C., Hsu, T.W.: The method of fundamental solutions for oscillatory and porous buoyant flows. Comput. Fluid. 39, 696–708 (2010)
86. 278.
Tsai, C.C., Hsu, T.W.: A meshless numerical method for solving slow mixed convections in containers with discontinuous boundary data. Int. J. Numer. Method. Fluid. 66, 377–402 (2011)
87. 279.
Tsai, C.C., Young, D.L., Fan, C.M., Chen, C.W.: MFS with time-dependent fundamental solutions for unsteady Stokes equations. Eng. Anal. Bound. Elem. 30, 897–908 (2006)
88. 280.
Tsangaris, T., Smyrlis, Y.S., Karageorghis, A.: Numerical analysis of the method of fundamental solutions for harmonic problems in annular domains. Numer. Method. Partial Differ. Equ. 21, 507–539 (2005)
89. 284.
Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc. 35, 499–544 (1929)
90. 287.
Weinstock, B.M.: Uniform approximation by solutions of elliptic equations. Proc. Am. Math. Soc. 41, 513–517 (1973)
91. 288.
Wen, P.H., Liu, Y.W.: The fundamental solution of poroelastic plate saturated by fluid and its applications. Int. J. Numer. Anal. Method. Geomech. 34, 689–709 (2010)
92. 296.
Young, D.L., Chen, C.H., Fan, C.M., Shen, L.H.: The method of fundamental solutions with eigenfunctions expansion method for 3d nonhomogeneous diffusion equations. Numer. Method. Partial Differ. Equ. 25, 195–211 (2009)
93. 297.
Young, D.L., Chen, C.W., Fan, C.M., Tsai, C.C.: The method of fundamental solutions with eigenfunction expansion method for nonhomogeneous diffusion equation. Numer. Method. Partial Differ. Equ. 22, 1173–1196 (2006)
94. 298.
Young, D.L., Fan, C.M., Hu, S.P., Atluri, S.N.: The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations. Eng. Anal. Bound. Elem. 32, 395–412 (2008)
95. 299.
Young, D.L., Jane, S.J., Fan, C.M., Murugesan, K., Tsai, C.C.: The method of fundamental solutions for 2D and 3D Stokes problems. J. Comput. Phys. 211, 1–8 (2006)
96. 300.
Young, D.L., Tsai, C.C., Murugesan, K., Fan, C.M., Chen, C.W.: Time-dependent fundamental solutions for homogeneous diffusion problems. Eng. Anal. Bound. Elem. 28, 1463–1473 (2004)
97. 302.
Zhou, H., Pozrikidis, C.: Adaptive singularity method for Stokes flow past particles. J. Comput. Phys. 117, 79–89 (1995)