Advertisement

Abstract

Although single- and double-layer potentials can be used to reduce the dimension of a problem, this comes at the prize of having to deal with integrals over the boundary of a domain. Moreover, these boundary integrals are singular. In order to remove the singularity, we use an approach by Runge which shifts integration towards the boundary of a larger domain. Based on this approach, we introduce the method of fundamental solutions in which a solution to a given partial differential equation is approximated as a linear combination of fundamental solutions to said equations with singularities at suitable points. Subsequent to a short historical overview on the method of fundamental solutions, we show how such a method can be formulated in the context of quasistatic poroelasticity. The main goal of this chapter is to prove density of suitable sets of fundamental solutions in a certain space of solutions to the quasistatic equations of poroelasticity. In a first step, this is done under the assumption of vanishing initial conditions. In order to allow for non-vanishing initial conditions, density results for the method of fundamental solutions in the context of the heat equation are used. This leads to an alternative solution scheme which is also based on the method of fundamental solutions.

Keywords

Fundamental Solution Heat Equation Laplace Equation Collocation Point Density Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 4.
    Aleksidze, M.A.: On approximation solutions of a certain mixed boundary value problem in the theory of harmonic functions. Differ. Equ. 2, 515–518 (1966)Google Scholar
  2. 8.
    Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem. 33, 1348–1361 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 9.
    Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to the calculation of eigensolutions for 2D plates. Int. J. Numer. Method. Eng. 77, 177–194 (2009)MathSciNetCrossRefGoogle Scholar
  4. 10.
    Alves, C.J.S., Silvestre, A.L.: Density results using Stokeslets and a method of fundamental solutions for the Stokes equations. Eng. Anal. Bound. Elem. 28, 1245–1252 (2004)CrossRefzbMATHGoogle Scholar
  5. 12.
    António, J., Tadeu, A., Godinho, L.: A Three-dimensional acoustics model using the method of fundamental solutions. Eng. Anal. Bound. Elem. 32, 525–531 (2008)CrossRefzbMATHGoogle Scholar
  6. 14.
    Augustin, M.: On the role of poroelasticity for modeling of stress fields in geothermal reservoirs. Int. J. Geomath. 3, 67–93 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 17.
    Augustin, M., Freeden, W., Gerhards, C., Möhringer, S., Ostermann, I.: Mathematische Methoden in der Geothermie. Math. Semesterber. 59, 1–28 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 22.
    Balakrishnan, K., Ramachandran, P.A.: The method of fundamental solutions for linear diffusion-reaction equations. Math. Comput. Model. 31, 221–237 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 24.
    Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227, 7003–7026 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 40.
    Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22, 644–669 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 41.
    Browder, F.E.: Approximation by solutions of partial differential equations. Am. J. Math. 84, 134–160 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 43.
    Chantasiriwan, S.: Methods of fundamental solutions for time-dependent heat conduction problems. Int. J. Numer. Method. Eng. 66, 147–165 (2006)CrossRefzbMATHGoogle Scholar
  13. 44.
    Chantasiriwan, S., Johansson, B.T., Lesnic, D.: The method of fundamental solutions for free surface Stefan problems. Eng. Anal. Bound. Elem. 33, 529–538 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 45.
    Chen, C.S., Karageorghis, A., Smyrlis, Y.S. (eds.): The method of fundamental solutions – a meshless method. Dynamic Publishers, Atlanta (2008)zbMATHGoogle Scholar
  15. 46.
    Chen, C.S., Rashed, Y.F., Golberg, M.A.: A Mesh-Free Method for Linear Diffusion Equations. Numer. Heat Transf. B 33, 469–486 (1998)CrossRefGoogle Scholar
  16. 47.
    Chen, C.W., Young, D.L., Tsai, C.C., Murugesan, K.: The method of fundamental solutions for inverse 2D Stokes problems. Comput. Mech. 37, 2–14 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 50.
    Chen, J.T., Wu, C.S., Lee, Y.T., Chen, K.H.: On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations. Comput. Math. Appl. 53, 851–879 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 57.
    Costabel, M.: Boundary integral operators for the heat equation. Integral Equ. Operat. Theory 13, 498–552 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 74.
    Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 75.
    Fairweather, G., Karageorghis, A., Martin, P.A.: The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Bound. Elem. 27, 759–769 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 76.
    Fam, G.S.A., Rashed, Y.F.: The method of fundamental solutions applied to 3d structures with body forces using particular solutions. Comput. Mech. 36, 245–254 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 79.
    Freeden, W.: On the approximation of external gravitational potential with closed systems of (trial) functions. Bull. Géod. 54, 1–20 (1980)MathSciNetCrossRefGoogle Scholar
  23. 80.
    Freeden, W.: Least squares approximation by linear combination of (multi-)poles. Report 344, The Ohio State University, Departement of Geodetic Science and Surveying, Columbus (1983)Google Scholar
  24. 89.
    Freeden, W., Kersten, H.: A constructive approximation theorem for the oblique derivative problem in potential theory. Math. Method. Appl. Sci. 3, 104–114 (1981)MathSciNetCrossRefGoogle Scholar
  25. 91.
    Freeden, W., Michel, V.: Multiscale Potential Theory with Applications to Geoscience. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2004)CrossRefzbMATHGoogle Scholar
  26. 101.
    Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)zbMATHGoogle Scholar
  27. 116.
    Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: M.A. Golberg (ed.) Boundary Integral Methods – Numerical and Mathematical Aspects, chap. 4, pp. 103–176. WIT Press, Southampton (1998)Google Scholar
  28. 120.
    Gorzelańczyk, P., Kołodziej, J.A.: Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods. Eng. Anal. Bound. Elem. 32, 64–75 (2008)CrossRefzbMATHGoogle Scholar
  29. 121.
    Grothaus, M., Raskop, T.: Limit formulae and jump relations of potential theory in Sobolev spaces. Int. J. Geomath. 1, 51–100 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 122.
    Gu, M.H., Fan, C.M., Young, D.L.: The method of fundamental solutions for the multi-dimensional wave equations. J. Mar. Sci. Technol. 19, 586–595 (2011)Google Scholar
  31. 124.
    Guimaraes, S., Telles, J.C.F.: The method of fundamental solutions for fracture mechanics – Reissner’s plate application. Eng. Anal. Bound. Elem. 33, 1152–1160 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 129.
    Herrera, I.: Trefftz method: a general theory. Numer. Method. Partial Differ. Equ. 16, 561–580 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 131.
    Hon, Y.C., Li, M.: A discrepancy principle for the source points location in using the MFS for solving the BHCP. Int. J. Comput. Method. 6, 181–197 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 132.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 256. Springer, Berlin (1983)Google Scholar
  35. 133.
    Hu, S.P., Fan, C.M., Chen, C.W., Young, D.L.: Method of fundamental solutions for Stokes’ first and second problems. J. Mech. 21, 25–31 (2005)CrossRefGoogle Scholar
  36. 137.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)Google Scholar
  37. 140.
    Johansson, B.T., Lesnic, D.: A method of fundamental solutions for transient heat conduction. Eng. Anal. Bound. Elem. 32, 697–703 (2008)CrossRefzbMATHGoogle Scholar
  38. 141.
    Johansson, B.T., Lesnic, D.: A method of fundamental solutions for transient heat conduction in layered material. Eng. Anal. Bound. Elem. 33, 1362–1367 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 142.
    Johansson, B.T., Lesnic, D., Reeve, T.: A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl. Math. Model. 35, 4367–4378 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 143.
    Johansson, B.T., Lesnic, D., Reeve, T.: A method of fundamental solutions for two-dimensional heat conduction. Int. J. Comput. Math. 88, 1697–1713 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 144.
    Johnson, R.: A priori estimates and unique continuation theorems for second order parabolic equations. Trans. Am. Math. Soc. 158, 167–177 (1971)CrossRefzbMATHGoogle Scholar
  42. 145.
    Johnston, R.L., Fairweather, G.: The method of fundamental solutions for problems in potential flow. Appl. Math. Model. 8, 265–270 (1984)CrossRefzbMATHGoogle Scholar
  43. 147.
    Karageorghis, A., Fairweather, G.: The method of fundamental solutions for the numerical solution of the biharmonic equation. J. Comput. Phys. 69, 434–459 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 148.
    Karageorghis, A., Fairweather, G.: The method of fundamental solutions for axisymmetric elasticity problems. Comput. Mech. 25, 524–532 (2000)CrossRefzbMATHGoogle Scholar
  45. 149.
    Karageorghis, A., Poullikkas, A., Berger, J.R.: Stress intensity factor computation using the method of fundamental solutions. Comput. Mech. 37, 445–454 (2006)CrossRefzbMATHGoogle Scholar
  46. 150.
    Karageorghis, A., Smyrlis, Y.S., Tsangaris, T.: A matrix decomposition MFS algorithm for certain linear elasticity problems. Numer. Algorithm. 43, 123–149 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 151.
    Katsurada, M.: A mathematical study of the charge simulation method II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 135–162 (1989)MathSciNetGoogle Scholar
  48. 154.
    Katsurada, M., Okamoto, H.: A mathematical study of the charge simulation method I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35, 507–518 (1988)MathSciNetzbMATHGoogle Scholar
  49. 155.
    Katsurada, M., Okamoto, H.: The collocation points of the fundamental solution method for the potential problem. Comput. Math. Appl. 31, 123–137 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 158.
    Kita, E., Kamiya, N.: Trefftz method: an overview. Adv. Eng. Softw. 24, 3–12 (1995)CrossRefzbMATHGoogle Scholar
  51. 159.
    Kitagawa, T.: On the numerical stability of the method of fundamental solution applied to the Dirichlet problem. Jpn. J. Appl. Math. 5, 123–133 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 160.
    Kitagawa, T.: Asymptotic stability of the fundamental solution method. J. Comput. Appl. Math. 38, 263–269 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 162.
    Kondapalli, P.S., Shippy, D.J., Fairweather, G.: Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions. J. Acoust. Soc. Am. 91, 1844–1854 (1992)CrossRefGoogle Scholar
  54. 163.
    Kupradze, V.D.: A method for the approximate solution of limiting problems in mathematical physics. USSR Comput. Math. Math. Phys. 4, 199–205 (1964)CrossRefGoogle Scholar
  55. 167.
    Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems. USSR Comput. Math. Math. Phys. 4, 82–126 (1964)MathSciNetCrossRefGoogle Scholar
  56. 172.
    Li, X.: On convergence of the method of fundamental solutions for solving the Dirichlet problem of Poisson’s equation. Adv. Comput. Math. 23, 265–277 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 173.
    Li, X.: Convergence of the method of fundamental solutions for Poisson’s equation on the unit sphere. Adv. Comput. Math. 28, 269–282 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 174.
    Li, X.: Rate of convergence of the method of fundamental solutions and hyperinterpolation for modified Helmholtz equations on the unit ball. Adv. Comput. Math. 29, 393–413 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 187.
    Marin, L.: An alternating iterative MFS algorithm for the Cauchy problem for the modified Helmholtz equation. Comput. Mech. 45, 665–677 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 189.
    Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14, 638–650 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 195.
    Cirne de Mederios, G., Partridge, P.W.: The method of fundamental solutions with dual reciprocity for thermoelasticity. In: International Workshop on Meshfree Methods, Lisbon (2003)Google Scholar
  62. 196.
    Cirne de Mederios, G., Partridge, P.W., Bandão, J.O.: The method of fundamental solutions with dual reciprocity for some problems in elasticity. Eng. Anal. Bound. Elem. 28, 453–461 (2004)Google Scholar
  63. 199.
    Mikhailov, V.P.: Partial Differential Equations. MIR Publishers, Moscow (1978)Google Scholar
  64. 206.
    Müller, C., Kersten, H.: Zwei Klassen vollständiger Funktionensysteme zur Behandlung der Randwertaufgaben der Schwingungsgleichung \(\bigtriangleup U + k^{2}U = 0\). Math. Method. Appl. Sci. 2, 48–67 (1980)CrossRefzbMATHGoogle Scholar
  65. 211.
    Nennig, P., Perrey-Debain, E., Chazot, J.D.: The method of fundamental solutions for acoustic wave scattering by a single and a periodic array of poroelastic scatterers. Eng. Anal. Bound. Elem. 35, 1019–1028 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 226.
    Poullikkas, A., Karageorghis, A., Georgiou, G.: The numerical solution of three-dimensional Signorini problems with the method of fundamental solutions. Eng. Anal. Bound. Elem. 25, 221–227 (2001)CrossRefzbMATHGoogle Scholar
  67. 232.
    Raskop, T.: The analysis of oblique boundary problems and limit formulae motivated by problems from geomathematics. Ph.D. thesis, University of Kaiserslautern, Functional Analysis and Stochastic Analysis Group (2009)Google Scholar
  68. 233.
    Redekop, D.: Fundamental solutions for the collation [sic] method in planar elastostatics. Appl. Math. Model. 6, 390–393 (1982)CrossRefzbMATHGoogle Scholar
  69. 236.
    Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. rein. angew. Math. 135, 1–6 (1909)MathSciNetGoogle Scholar
  70. 238.
    Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)zbMATHGoogle Scholar
  71. 239.
    Runge, C.: Zur Theorie der eindeutigen analytischen Functionen. Acta Math. 6, 229–234 (1885)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 244.
    Saut, J.C., Scheurer, B.: Unique continuation for some evolution equations. J. Differ. Equ. 66, 118–139 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 246.
    Schaback, R.: Adaptive numerical solution of MFS systems. In: C.S. Chen, A. Karageorghis, Y.S. Smyrlis (eds.) The Method of Fundamental Solutions – A Meshless Method, pp. 1–27. Dynamic Publishers, Atlanta (2008)Google Scholar
  74. 252.
    Sensale-Rodriguez, B., Sensale, B., Leitão, V.M.A., Peixeiro, C.: Microstrip antenna analysis using the method of fundamental solutions. Int. J. Numer. Model.: Electron. Net. Device. Field. 21, 563–581 (2008)Google Scholar
  75. 261.
    Smyrlis, Y.S.: The method of fundamental solutions: a weighted least-squares approach. BIT Numer. Math. 46, 163–194 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 262.
    Smyrlis, Y.S.: Applicability and applications of the method of fundamental solutions. Math. Comput. 78, 1399–1434 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 263.
    Smyrlis, Y.S.: Density results with linear combinations of translates of fundamental solutions. J. Approx. Theory 161, 617–633 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 264.
    Smyrlis, Y.S.: Mathematical foundation of the MFS for certain elliptic systems in linear elasticity. Numer. Math. 112, 319–340 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 265.
    Smyrlis, Y.S., Karageorghis, A.: Numerical analysis of the MFS for certain harmonic problems. ESAIM: Math. Model. Numer. Anal. 38, 495–517 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 266.
    Smyrlis, Y.S., Karageorghis, A.: Efficient implementation of the MFS: the three scenarios. J. Comput. Appl. Math. 227, 83–92 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 267.
    Smyrlis, Y.S., Karageorghis, A.: The under-determined version of the MFS: taking more sources than collocation points. Appl. Numer. Math. 60, 337–357 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 274.
    Trefftz, E.: Ein Gegenstück zum Ritzschen Verfahren. In: Proceedings of the Second International Congress on Applied Mechanics, Zürich (1926)Google Scholar
  83. 275.
    Tsai, C.C.: Solutions of slow Brinkman flows using the method of fundamental solutions. Int. J. Numer. Method. Fluid. 56, 927–940 (2008)CrossRefzbMATHGoogle Scholar
  84. 276.
    Tsai, C.C.: The method of fundamental solutions with dual reciprocity for three-dimensional thermoelasticity under arbitrary body forces. Eng. Comput. Int. J. Comput. Eng. Softw. 26, 229–244 (2009)zbMATHGoogle Scholar
  85. 277.
    Tsai, C.C., Hsu, T.W.: The method of fundamental solutions for oscillatory and porous buoyant flows. Comput. Fluid. 39, 696–708 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 278.
    Tsai, C.C., Hsu, T.W.: A meshless numerical method for solving slow mixed convections in containers with discontinuous boundary data. Int. J. Numer. Method. Fluid. 66, 377–402 (2011)CrossRefzbMATHGoogle Scholar
  87. 279.
    Tsai, C.C., Young, D.L., Fan, C.M., Chen, C.W.: MFS with time-dependent fundamental solutions for unsteady Stokes equations. Eng. Anal. Bound. Elem. 30, 897–908 (2006)CrossRefzbMATHGoogle Scholar
  88. 280.
    Tsangaris, T., Smyrlis, Y.S., Karageorghis, A.: Numerical analysis of the method of fundamental solutions for harmonic problems in annular domains. Numer. Method. Partial Differ. Equ. 21, 507–539 (2005)MathSciNetGoogle Scholar
  89. 284.
    Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc. 35, 499–544 (1929)CrossRefzbMATHGoogle Scholar
  90. 287.
    Weinstock, B.M.: Uniform approximation by solutions of elliptic equations. Proc. Am. Math. Soc. 41, 513–517 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  91. 288.
    Wen, P.H., Liu, Y.W.: The fundamental solution of poroelastic plate saturated by fluid and its applications. Int. J. Numer. Anal. Method. Geomech. 34, 689–709 (2010)zbMATHGoogle Scholar
  92. 296.
    Young, D.L., Chen, C.H., Fan, C.M., Shen, L.H.: The method of fundamental solutions with eigenfunctions expansion method for 3d nonhomogeneous diffusion equations. Numer. Method. Partial Differ. Equ. 25, 195–211 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  93. 297.
    Young, D.L., Chen, C.W., Fan, C.M., Tsai, C.C.: The method of fundamental solutions with eigenfunction expansion method for nonhomogeneous diffusion equation. Numer. Method. Partial Differ. Equ. 22, 1173–1196 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 298.
    Young, D.L., Fan, C.M., Hu, S.P., Atluri, S.N.: The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations. Eng. Anal. Bound. Elem. 32, 395–412 (2008)CrossRefzbMATHGoogle Scholar
  95. 299.
    Young, D.L., Jane, S.J., Fan, C.M., Murugesan, K., Tsai, C.C.: The method of fundamental solutions for 2D and 3D Stokes problems. J. Comput. Phys. 211, 1–8 (2006)CrossRefzbMATHGoogle Scholar
  96. 300.
    Young, D.L., Tsai, C.C., Murugesan, K., Fan, C.M., Chen, C.W.: Time-dependent fundamental solutions for homogeneous diffusion problems. Eng. Anal. Bound. Elem. 28, 1463–1473 (2004)CrossRefzbMATHGoogle Scholar
  97. 302.
    Zhou, H., Pozrikidis, C.: Adaptive singularity method for Stokes flow past particles. J. Comput. Phys. 117, 79–89 (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matthias Albert Augustin
    • 1
  1. 1.AG GeomathematikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations