Skip to main content

Endothelial Cell Function and Hypertension: Interactions Among Inflammation, Immune Function, and Exercise

  • Chapter
Effects of Exercise on Hypertension

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Chronic inflammation is significantly associated with hypertension and cardiovascular disease. It is difficult to definitively ascertain whether immune activities are an origin or consequence of diseases related to the pathogenesis of endothelial dysfunction and hypertension. During an acute inflammatory insult, endothelial cells and the surrounding vascular tissue participate in the transient immune response. However, chronic inflammation primes the endothelium to become a tissue depot that promotes heightened reactive oxygen species production and produces inflammatory mediators that potentiate vascular dysfunction. Herein, the evidence in which immune cells (innate and adaptive) and circulating and membrane bound mediators (i.e., cytokines, oxidative stress, cellular adhesion molecules, and pattern recognition receptors) participate in the dysfunction of the vasculature and effector organs (e.g., kidney) that prime endothelial dysfunction and promote hypertension will be reviewed. Further, the interactions between the effects of exercise on systemic (i.e., whole body) and local (i.e., vascular endothelium) immune cell function and hypertension will be discussed. This chapter will provide evidence advocating for the implementation of habitual exercise as a primary prevention and adjunctive treatment approach in counteracting inflammation, endothelial dysfunction, and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

Adenosine monophosphate activated protein kinase

Ang II:

Angiotensin II

CAM:

Cellular adhesion molecules (intracellular—ICAM vascular—VCAM)

CRP:

C-reactive protein

CVD:

Cardiovascular disease

EC:

Endothelial cells

EnDy:

Endothelial dysfunction

eNOS:

Endothelial nitric oxide synthase

IL-(1β,ra):

Interleukin-1βeta ra-receptor antagonist

IL-(6 10, 17):

Interleukin-6, 10, 17

Mφ:

Macrophage

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor-κB

NOX2:

NADPH oxidase 2 subunit

oxLDL:

Oxidized low-density lipoprotein

PPAR-γ:

Peroxisome proliferator-activated receptor-gamma

ROS:

Reactive oxygen species

Th (1,2,17):

T helper (1, 2, 17) cell

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor-alpha

Treg:

Regulatory T cell

References

  1. Davies PF, Civelek M, Fang Y, Fleming I. The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc Res. 2013;99:315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schiffrin EL. The immune system: role in hypertension. Can J Cardiol. 2013;29:543–8.

    Article  PubMed  Google Scholar 

  3. Harrison DG, Guzik TJ, Lob HE, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57:132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verlohren S, Muller DN, Luft FC, Dechend R. Immunology in hypertension, preeclampsia, and target-organ damage. Hypertension. 2009;54:439–43.

    Article  CAS  PubMed  Google Scholar 

  5. Amery A, Birkenhager W, Brixko R, et al. Efficacy of antihypertensive drug treatment according to age, sex, blood pressure, and previous cardiovascular disease in patients over the age of 60. Lancet. 1986;2:589–92.

    Article  CAS  PubMed  Google Scholar 

  6. Asayama K, Satoh M, Murakami Y, et al. Cardiovascular risk with and without antihypertensive drug treatment in the Japanese general population: participant-level meta-analysis. Hypertension. 2014;63:1189–97.

    Article  CAS  PubMed  Google Scholar 

  7. Lele RD. Causation, prevention and reversal of vascular endothelial dysfunction. J Assoc Physicians India. 2007;55:643–51.

    CAS  PubMed  Google Scholar 

  8. Virdis A, Dell'Agnello U, Taddei S. Impact of inflammation on vascular disease in hypertension. Maturitas. 2014;78:179–83.

    Article  CAS  PubMed  Google Scholar 

  9. Mauno V, Hannu K, Esko K. Proinflammation and hypertension: a population-based study. Mediators Inflamm. 2008;2008:619704.

    PubMed  Google Scholar 

  10. Sitia S, Tomasoni L, Atzeni F, et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 2010;9:830–4.

    Article  CAS  PubMed  Google Scholar 

  11. Woods A, Brull DJ, Humphries SE, Montgomery HE. Genetics of inflammation and risk of coronary artery disease: the central role of interleukin-6. Eur Heart J. 2000;21:1574–83.

    Article  CAS  PubMed  Google Scholar 

  12. Biasucci LM, Vitelli A, Liuzzo G, et al. Elevated levels of interleukin-6 in unstable angina. Circulation. 1996;94:874–7.

    Article  CAS  PubMed  Google Scholar 

  13. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101:1767–72.

    Article  CAS  PubMed  Google Scholar 

  14. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148:209–14.

    Article  CAS  PubMed  Google Scholar 

  15. Dalekos GN, Elisaf M, Bairaktari E, Tsolas O, Siamopoulos KC. Increased serum levels of interleukin-1beta in the systemic circulation of patients with essential hypertension: additional risk factor for atherogenesis in hypertensive patients? J Lab Clin Med. 1997;129:300–8.

    Article  CAS  PubMed  Google Scholar 

  16. Harrison DG, Marvar PJ, Titze JM. Vascular inflammatory cells in hypertension. Front Physiol. 2012;3:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Golbidi S, Mesdaghinia A, Laher I. Exercise in the metabolic syndrome. Oxid Med Cell Longev. 2012;2012:349710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol. 2003;35:881–900.

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Yang F, Yang XP, Jankowski M, Pagano PJ. NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol. 2003;23:776–82.

    Article  CAS  PubMed  Google Scholar 

  20. Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol. 2005;77:487–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pate M, Damarla V, Chi DS, Negi S, Krishnaswamy G. Endothelial cell biology: role in the inflammatory response. Adv Clin Chem. 2010;52:109–30.

    Article  CAS  PubMed  Google Scholar 

  22. Kempe S, Kestler H, Lasar A, Wirth T. NF-kappaB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res. 2005;33:5308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Granger DN, Kubes P. Nitric oxide as antiinflammatory agent. Methods Enzymol. 1996;269:434–42.

    Article  CAS  PubMed  Google Scholar 

  24. Momi S, Monopoli A, Alberti PF, et al. Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis. Cardiovasc Res. 2012;94:428–38.

    Article  CAS  PubMed  Google Scholar 

  25. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7:803–15.

    Article  CAS  PubMed  Google Scholar 

  26. Bleda S, de Haro J, Varela C, Esparza L, Ferruelo A, Acin F. NLRP1 inflammasome, and not NLRP3, is the key in the shift to proinflammatory state on endothelial cells in peripheral arterial disease. Int J Cardiol. 2014;172:e282–4.

    Article  PubMed  Google Scholar 

  27. Pober JS, Lapierre LA, Stolpen AH, et al. Activation of cultured human endothelial cells by recombinant lymphotoxin: comparison with tumor necrosis factor and interleukin 1 species. J Immunol. 1987;138:3319–24.

    CAS  PubMed  Google Scholar 

  28. Dejana E, Orsenigo F. Endothelial adherens junctions at a glance. J Cell Sci. 2013;126:2545–9.

    Article  CAS  PubMed  Google Scholar 

  29. Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal. 2009;11:791–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Flynn MG, McFarlin BK. Toll-like receptor 4: link to the anti-inflammatory effects of exercise? Exerc Sport Sci Rev. 2006;34:176–81.

    Article  PubMed  Google Scholar 

  31. Gleeson M, McFarlin B, Flynn M. Exercise and Toll-like receptors. Exerc Immunol Rev. 2006;12:34–53.

    PubMed  Google Scholar 

  32. Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med. 2002;166:S4–8.

    Article  PubMed  Google Scholar 

  33. Murphy MP, Siegel RM. Mitochondrial ROS fire up T cell activation. Immunity. 2013;38:201–2.

    Article  CAS  PubMed  Google Scholar 

  34. Nazarewicz RR, Dikalov SI. Mitochondrial ROS in the prohypertensive immune response. Am J Physiol Regul Integr Comp Physiol. 2013;305:R98–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10:709–20.

    CAS  PubMed  Google Scholar 

  36. Dikalova AE, Bikineyeva AT, Budzyn K, et al. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res. 2010;107:106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang H, Park Y, Wu J, et al. Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond). 2009;116:219–30.

    Article  CAS  Google Scholar 

  38. Brown MD, Feairheller DL, Thakkar S, Veerabhadrappa P, Park JY. Racial differences in tumor necrosis factor-alpha-induced endothelial microparticles and interleukin-6 production. Vasc Health Risk Manag. 2011;7:541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harrison DG, Gongora MC. Oxidative stress and hypertension. Med Clin North Am. 2009;93:621–35.

    Article  CAS  PubMed  Google Scholar 

  40. Kaminski MM, Roth D, Sass S, Sauer SW, Krammer PH, Gulow K. Manganese superoxide dismutase: a regulator of T cell activation-induced oxidative signaling and cell death. Biochim Biophys Acta. 2012;1823:1041–52.

    Article  CAS  PubMed  Google Scholar 

  41. Boshtam M, Rafiei M, Sadeghi K, Sarraf-Zadegan N. Vitamin E can reduce blood pressure in mild hypertensives. Int J Vitam Nutr Res. 2002;72:309–14.

    Article  CAS  PubMed  Google Scholar 

  42. Rodrigo R, Prat H, Passalacqua W, Araya J, Bachler JP. Decrease in oxidative stress through supplementation of vitamins C and E is associated with a reduction in blood pressure in patients with essential hypertension. Clin Sci (Lond). 2008;114:625–34.

    Article  CAS  Google Scholar 

  43. Kalpdev A, Saha SC, Dhawan V. Vitamin C and E supplementation does not reduce the risk of superimposed PE in pregnancy. Hypertens Pregnancy. 2011;30:447–56.

    Article  CAS  PubMed  Google Scholar 

  44. Kamgar M, Zaldivar F, Vaziri ND, Pahl MV. Antioxidant therapy does not ameliorate oxidative stress and inflammation in patients with end-stage renal disease. J Natl Med Assoc. 2009;101:336–44.

    Article  PubMed  Google Scholar 

  45. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest. 1996;98:2572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wenzel P, Knorr M, Kossmann S, et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011;124:1370–81.

    Article  CAS  PubMed  Google Scholar 

  47. Machnik A, Neuhofer W, Jantsch J, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.

    Article  CAS  PubMed  Google Scholar 

  48. White FN, Grollman A. Autoimmune factors associated with infarction of the kidney. Nephron. 1964;1:93–102.

    Article  CAS  PubMed  Google Scholar 

  49. Bendich A, Belisle EH, Strausser HR. Immune system modulation and its effect on the blood pressure of the spontaneously hypertensive male and female rat. Biochem Biophys Res Commun. 1981;99:600–7.

    Article  CAS  PubMed  Google Scholar 

  50. Dzielak DJ. Immune mechanisms in experimental and essential hypertension. Am J Physiol. 1991;260:R459–67.

    CAS  PubMed  Google Scholar 

  51. Ba D, Takeichi N, Kodama T, Kobayashi H. Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J Immunol. 1982;128:1211–6.

    CAS  PubMed  Google Scholar 

  52. Quiroz Y, Johnson RJ, Rodriguez-Iturbe B. The role of T cells in the pathogenesis of primary hypertension. Nephrol Dial Transplant. 2012;27 Suppl 4:iv2–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crowley SD, Song YS, Lin EE, Griffiths R, Kim HS, Ruiz P. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1089–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crowley SD, Frey CW, Gould SK, et al. Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Renal Physiol. 2008;295:F515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoch NE, Guzik TJ, Chen W, et al. Regulation of T-cell function by endogenously produced angiotensin II. Am J Physiol Regul Integr Comp Physiol. 2009;296:R208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feairheller DL, Park JY, Sturgeon KM, et al. Racial differences in oxidative stress and inflammation: in vitro and in vivo. Clin Transl Sci. 2011;4:32–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Akdis CA, Blaser K. Mechanisms of interleukin-10-mediated immune suppression. Immunology. 2001;103:131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kassan M, Galan M, Partyka M, Trebak M, Matrougui K. Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler Thromb Vasc Biol. 2011;31:2534–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barhoumi T, Kasal DA, Li MW, et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension. 2011;57:469–76.

    Article  CAS  PubMed  Google Scholar 

  61. Tousoulis D, Androulakis E, Papageorgiou N, Stefanadis C. Novel therapeutic strategies in the management of arterial hypertension. Pharmacol Ther. 2012;135:168–75.

    Article  CAS  PubMed  Google Scholar 

  62. Wilund KR. Is the anti-inflammatory effect of regular exercise responsible for reduced cardiovascular disease? Clin Sci (Lond). 2007;112:543–55.

    Article  CAS  Google Scholar 

  63. Hawley JA, Holloszy JO. Exercise: it’s the real thing! Nutr Rev. 2009;67:172–8.

    Article  PubMed  Google Scholar 

  64. Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.

    PubMed  Google Scholar 

  65. Walsh NP, Gleeson M, Pyne DB, et al. Position statement. Part two: maintaining immune health. Exerc Immunol Rev. 2011;17:64–103.

    PubMed  Google Scholar 

  66. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98:1154–62.

    Article  CAS  PubMed  Google Scholar 

  67. Petersen AM, Pedersen BK. The role of IL-6 in mediating the anti-inflammatory effects of exercise. J Physiol Pharmacol. 2006;57 Suppl 10:43–51.

    PubMed  Google Scholar 

  68. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000;117:1162–72.

    Article  CAS  PubMed  Google Scholar 

  69. Rietjens SJ, Beelen M, Koopman R, VAN Loon LJ, Bast A, Haenen GR. A single session of resistance exercise induces oxidative damage in untrained men. Med Sci Sports Exerc. 2007;39:2145–51.

    Article  CAS  PubMed  Google Scholar 

  70. Golbidi S, Badran M, Laher I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Exp Diabetes Res. 2012;2012:941868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bruunsgaard H. Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol. 2005;78:819–35.

    Article  CAS  PubMed  Google Scholar 

  72. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11:607–15.

    Article  CAS  PubMed  Google Scholar 

  73. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11:85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cupps TR, Fauci AS. Corticosteroid-mediated immunoregulation in man. Immunol Rev. 1982;65:133–55.

    Article  CAS  PubMed  Google Scholar 

  75. Pedersen BK, Toft AD. Effects of exercise on lymphocytes and cytokines. Br J Sports Med. 2000;34:246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wilson LD, Zaldivar FP, Schwindt CD, Wang-Rodriguez J, Cooper DM. Circulating T-regulatory cells, exercise and the elite adolescent swimmer. Pediatr Exerc Sci. 2009;21:305–17.

    PubMed  PubMed Central  Google Scholar 

  77. Perry C, Herishanu Y, Hazan-Halevy I, et al. Reciprocal changes in regulatory T cells and Th17 helper cells induced by exercise in patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53:1807–10.

    Article  CAS  PubMed  Google Scholar 

  78. De la Fuente M, Hernanz A, Vallejo MC. The immune system in the oxidative stress conditions of aging and hypertension: favorable effects of antioxidants and physical exercise. Antioxid Redox Signal. 2005;7:1356–66.

    Article  PubMed  Google Scholar 

  79. Beck DT, Martin JS, Casey DP, Braith RW. Exercise training improves endothelial function in resistance arteries of young prehypertensives. J Hum Hypertens. 2013;28:303–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Beck DT, Casey DP, Martin JS, Emerson BD, Braith RW. Exercise training improves endothelial function in young prehypertensives. Exp Biol Med (Maywood). 2013;238:433–41.

    Article  CAS  Google Scholar 

  81. Heffernan KS, Jae SY, Vieira VJ, et al. C-reactive protein and cardiac vagal activity following resistance exercise training in young African-American and white men. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1098–105.

    Article  CAS  PubMed  Google Scholar 

  82. Cook MD, Heffernan KS, Ranadive S, Woods JA, Fernhall B. Effect of resistance training on biomarkers of vascular function and oxidative stress in young African-American and Caucasian men. J Hum Hypertens. 2013;27:388–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44:126–31.

    Article  CAS  PubMed  Google Scholar 

  84. Scheele C, Nielsen S, Pedersen BK. ROS and myokines promote muscle adaptation to exercise. Trends Endocrinol Metab. 2009;20:95–9.

    Article  CAS  PubMed  Google Scholar 

  85. Petridou A, Tsalouhidou S, Tsalis G, Schulz T, Michna H, Mougios V. Long-term exercise increases the DNA binding activity of peroxisome proliferator-activated receptor gamma in rat adipose tissue. Metabolism. 2007;56:1029–36.

    Article  CAS  PubMed  Google Scholar 

  86. Kahara T, Takamura T, Hayakawa T, et al. PPARgamma gene polymorphism is associated with exercise-mediated changes of insulin resistance in healthy men. Metabolism. 2003;52:209–12.

    Article  CAS  PubMed  Google Scholar 

  87. Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J. PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol. 1999;19:546–51.

    Article  CAS  PubMed  Google Scholar 

  88. Von Knethen AA, Brune B. Delayed activation of PPARgamma by LPS and IFN-gamma attenuates the oxidative burst in macrophages. FASEB J. 2001;15:535–44.

    Article  Google Scholar 

  89. Hamblin M, Chang L, Fan Y, Zhang J, Chen YE. PPARs and the cardiovascular system. Antioxid Redox Signal. 2009;11:1415–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J Am Coll Cardiol. 2003;42:1757–63.

    Article  CAS  PubMed  Google Scholar 

  91. Gensch C, Clever YP, Werner C, Hanhoun M, Bohm M, Laufs U. The PPAR-gamma agonist pioglitazone increases neoangiogenesis and prevents apoptosis of endothelial progenitor cells. Atherosclerosis. 2007;192:67–74.

    Article  CAS  PubMed  Google Scholar 

  92. Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension. 2004;43:993–1002.

    Article  CAS  PubMed  Google Scholar 

  93. Butcher LR, Thomas A, Backx K, Roberts A, Webb R, Morris K. Low-intensity exercise exerts beneficial effects on plasma lipids via PPARgamma. Med Sci Sports Exerc. 2008;40:1263–70.

    Article  CAS  PubMed  Google Scholar 

  94. Thomas AW, Davies NA, Moir H, et al. Exercise-associated generation of PPARgamma ligands activates PPARgamma signaling events and upregulates genes related to lipid metabolism. J Appl Physiol (1985). 2012;112:806–15.

    Article  CAS  Google Scholar 

  95. Ameshima S, Golpon H, Cool CD, et al. Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res. 2003;92:1162–9.

    Article  CAS  PubMed  Google Scholar 

  96. Rabinovitch M. PPARgamma and the pathobiology of pulmonary arterial hypertension. Adv Exp Med Biol. 2010;661:447–58.

    Article  CAS  PubMed  Google Scholar 

  97. Cacicedo JM, Gauthier MS, Lebrasseur NK, Jasuja R, Ruderman NB, Ido Y. Acute exercise activates AMPK and eNOS in the mouse aorta. Am J Physiol Heart Circ Physiol. 2011;301:H1255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhao X, Zmijewski JW, Lorne E, et al. Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295:L497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Winder WW, Taylor EB, Thomson DM. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Med Sci Sports Exerc. 2006;38:1945–9.

    Article  CAS  PubMed  Google Scholar 

  100. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009;418:261–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ford RJ, Rush JW. Endothelium-dependent vasorelaxation to the AMPK activator AICAR is enhanced in aorta from hypertensive rats and is NO and EDCF dependent. Am J Physiol Heart Circ Physiol. 2011;300:H64–75.

    Article  CAS  PubMed  Google Scholar 

  102. Lesniewski LA, Zigler MC, Durrant JR, Donato AJ, Seals DR. Sustained activation of AMPK ameliorates age-associated vascular endothelial dysfunction via a nitric oxide-independent mechanism. Mech Ageing Dev. 2012;133:368–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sag D, Carling D, Stout RD, Suttles J. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol. 2008;181:8633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee-Young RS, Koufogiannis G, Canny BJ, McConell GK. Acute exercise does not cause sustained elevations in AMPK signaling or expression. Med Sci Sports Exerc. 2008;40:1490–4.

    Article  CAS  PubMed  Google Scholar 

  105. Moir H, Butcher L, Jones KP, et al. AMPK inactivation in mononuclear cells: a potential intracellular mechanism for exercise-induced immunosuppression. Appl Physiol Nutr Metab. 2008;33:75–85.

    Article  CAS  PubMed  Google Scholar 

  106. Koh HJ, Hirshman MF, He H, et al. Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes. Biochem J. 2007;403:473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tharp GD. The role of glucocorticoids in exercise. Med Sci Sports. 1975;7:6–11.

    CAS  PubMed  Google Scholar 

  108. Pazirandeh A, Xue Y, Prestegaard T, Jondal M, Okret S. Effects of altered glucocorticoid sensitivity in the T cell lineage on thymocyte and T cell homeostasis. FASEB J. 2002;16:727–9.

    CAS  PubMed  Google Scholar 

  109. De Bosscher K, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol. 2009;23:281–91.

    Article  PubMed  CAS  Google Scholar 

  110. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). 1998;94:557–72.

    Article  CAS  Google Scholar 

  111. DeRijk R, Michelson D, Karp B, et al. Exercise and circadian rhythm-induced variations in plasma cortisol differentially regulate interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor-alpha (TNF alpha) production in humans: high sensitivity of TNF alpha and resistance of IL-6. J Clin Endocrinol Metab. 1997;82:2182–91.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc D. Cook M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cook, M.D. (2015). Endothelial Cell Function and Hypertension: Interactions Among Inflammation, Immune Function, and Exercise. In: Pescatello, L. (eds) Effects of Exercise on Hypertension. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-17076-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17076-3_14

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-17075-6

  • Online ISBN: 978-3-319-17076-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics