Skip to main content

Honeycomb Structured Films Prepared by Breath Figures: Fabrication and Application for Biorecognition Purposes

  • Chapter
  • First Online:
Design of Polymeric Platforms for Selective Biorecognition

Abstract

A breath figure (BF) is the water droplet array that is formed when moisture comes in contact with a cold substrate, for instance upon breathing. This phenomenon, well known since the beginning of the nineties, started to get a great attention with the work reported by Francois et al. in 1994. They discovered the formation of highly ordered porous films when a drop of polymer solution was cast under a moist airflow. Over the past two decades this method, named BF approach, has been extensively utilized as a versatile templating method for the fabrication of porous polymeric films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Widawski, G., M. Rawiso, and B. François, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature, 1994. 369(6479): p. 387–389.

    Google Scholar 

  2. Bunz, U.H.F., Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Advanced Materials, 2006. 18(8): p. 973–989.

    Google Scholar 

  3. Muñoz-Bonilla, A., M. Fernández-García, and J. Rodríguez-Hernández, Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science, 2013.

    Google Scholar 

  4. Bai, H., et al., Breath figure arrays: Unconventional fabrications, functionalizations, and applications. Angewandte Chemie—International Edition, 2013. 52(47): p. 12240–12255.

    Google Scholar 

  5. Escalé, P., et al., Recent advances in honeycomb-structured porous polymer films prepared via breath figures. European Polymer Journal, 2012. 48(6): p. 1001–1025.

    Google Scholar 

  6. Hernández-Guerrero, M. and M.H. Stenzel, Honeycomb structured polymer films via breath figures. Polymer Chemistry, 2012. 3(3): p. 563–577.

    Google Scholar 

  7. de León, A.S., et al., Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. Journal of Polymer Science Part A: Polymer Chemistry, 2012. 50(5): p. 851–859.

    Google Scholar 

  8. Zhao, B., et al., Water-assisted fabrication of honeycomb structure porous film from poly(l-lactide). Journal of Materials Chemistry, 2006. 16(5): p. 509–513.

    Google Scholar 

  9. Yabu, H., et al., Preparation of Honeycomb-Patterned Polyimide Films by Self-Organization. Langmuir, 2003. 19(15): p. 6297–6300.

    Google Scholar 

  10. Angus, S.D. and T.P. Davis, Polymer Surface Design and Infomatics: Facile Microscopy/Image Analysis Techniques for Self-Organizing Microporous Polymer Film Characterization. Langmuir, 2002. 18(24): p. 9547–9553.

    Google Scholar 

  11. Muñoz-Bonilla, A., et al., Engineering polymer surfaces with variable chemistry and topography. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(9): p. 2262–2271.

    Google Scholar 

  12. Pilati, F., et al., Design of surface properties of PET films: Effect of fluorinated block copolymers. Journal of Colloid and Interface Science, 2007. 315(1): p. 210–222.

    Google Scholar 

  13. Roszol, L.s., et al., Micropatterned Polyvinyl Butyral Membrane for Acid–Base Diodes. The Journal of Physical Chemistry B, 2010. 114(43): p. 13718–13725.

    Google Scholar 

  14. Mansouri, J., E. Yapit, and V. Chen, Polysulfone filtration membranes with isoporous structures prepared by a combination of dip-coating and breath figure approach. Journal of Membrane Science, 2013. 444(0): p. 237–251.

    Google Scholar 

  15. Nishikawa, T., et al., Fabrication of honeycomb film of an amphiphilic copolymer at the air–water interface. Langmuir, 2002. 18(15): p. 5734–5740.

    Google Scholar 

  16. Park, M.S. and J.K. Kim, Breath Figure Patterns Prepared by Spin Coating in a Dry Environment. Langmuir, 2004. 20(13): p. 5347–5352.

    Google Scholar 

  17. Kasai, W. and T. Kondo, Fabrication of Honeycomb-Patterned Cellulose Films. Macromolecular Bioscience, 2004. 4(1): p. 17–21.

    Google Scholar 

  18. Ding, J., et al., Breath figure in non-aqueous vapor. Soft Matter, 2013. 9(2): p. 506–514.

    Google Scholar 

  19. Xiong, X., et al., Microsphere Pattern Prepared by a “Reverse” Breath Figure Method. Macromolecules, 2009. 42(23): p. 9351–9356.

    Google Scholar 

  20. Zhang, R., et al., Fabrication of honeycomb polyvinyl butyral film under humidity provided by super saturated salt solutions. Journal of Applied Polymer Science, 2012. 124(1): p. 495–500.

    Google Scholar 

  21. Wong, K.H., et al., Honeycomb structured porous films from amphiphilic block copolymers prepared via RAFT polymerization. Polymer, 2007. 48(17): p. 4950–4965.

    Google Scholar 

  22. Han, X., et al., Formation of honeycomb films based on a soluble polyimide synthesized from 2,2′-bis[4-(3,4-dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride and 3,3′-dimethyl-4,4′-diaminodiphenylmethane. Journal of Applied Polymer Science, 2008. 107(1): p. 618–623.

    Google Scholar 

  23. Srinivasarao, M., et al., Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film. Science, 2001. 292(5514): p. 79–83.

    Google Scholar 

  24. Billon, L., et al., Tailoring Highly Ordered Honeycomb Films Based on Ionomer Macromolecules by the Bottom-Up Approach. Macromolecules, 2008. 42(1): p. 345–356.

    Google Scholar 

  25. Bormashenko, E., S. Balter, and D. Aurbach, On the Nature of the Breath Figures Self-Assembly in Evaporated Polymer Solutions: Revisiting Physical Factors Governing the Patterning. Macromolecular Chemistry and Physics, 2012. 213(16): p. 1742–1747.

    Google Scholar 

  26. Ferrari, E., P. Fabbri, and F. Pilati, Solvent and Substrate Contributions to the Formation of Breath Figure Patterns in Polystyrene Films. Langmuir, 2011. 27(5): p. 1874–1881.

    Google Scholar 

  27. Cai, Y. and B.-m. Zhang Newby, Porous Polymer Films Templated by Marangoni Flow-Induced Water Droplet Arrays. Langmuir, 2009. 25(13): p. 7638–7645.

    Google Scholar 

  28. Nishikawa, T., et al., Micropatterns Based on Deformation of a Viscoelastic Honeycomb Mesh. Langmuir, 2003. 19(15): p. 6193–6201.

    Google Scholar 

  29. Li, J., et al., Ordered Honeycomb-Structured Gold Nanoparticle Films with Changeable Pore Morphology: From Circle to Ellipse. Langmuir, 2005. 21(5): p. 2017–2021.

    Google Scholar 

  30. Yabu, H. and M. Shimomura, Simple Fabrication of Micro Lens Arrays. Langmuir, 2005. 21(5): p. 1709–1711.

    Google Scholar 

  31. Yabu, H., et al., Superhydrophobic and Lipophobic Properties of Self-Organized Honeycomb and Pincushion Structures. Langmuir, 2005. 21(8): p. 3235–3237.

    Google Scholar 

  32. Shojaei-Zadeh, S., S.R. Swanson, and S.L. Anna, Highly uniform micro-cavity arrays in flexible elastomer film. Soft Matter, 2009. 5(4): p. 743–746.

    Google Scholar 

  33. Yamamoto, S., et al., Effect of honeycomb-patterned surface topography on the adhesion and signal transduction of porcine aortic endothelial cells. Langmuir, 2007. 23(15): p. 8114–8120.

    Google Scholar 

  34. Galeotti, F., et al., Precise surface patterning of silk fibroin films by breath figures. Soft Matter, 2012. 8(17): p. 4815–4821.

    Google Scholar 

  35. Peng, J., et al., Formation of Regular Hole Pattern in Polymer Films. Macromolecular Chemistry and Physics, 2003. 204(1): p. 125–130.

    Google Scholar 

  36. Zhao, B., et al., Fabrication of honeycomb ordered polycarbonate films using water droplets as template. Thin Solid Films, 2007. 515(7–8): p. 3629–3634.

    Google Scholar 

  37. Tian, Y., et al., The formation of honeycomb structure in polyphenylene oxide films. Polymer, 2006. 47(11): p. 3866–3873.

    Google Scholar 

  38. Yunus, S., et al., A Route to Self-Organized Honeycomb Microstructured Polystyrene Films and Their Chemical Characterization by ToF-SIMS Imaging. Advanced Functional Materials, 2007. 17(7): p. 1079–1084.

    Google Scholar 

  39. Galeotti, F., et al., Self-Functionalizing Polymer Film Surfaces Assisted by Specific Polystyrene End-Tagging. Chemistry of Materials, 2010. 22(9): p. 2764–2769.

    Google Scholar 

  40. Stenzel, M.H., T.P. Davis, and A.G. Fane, Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. Journal of Materials Chemistry, 2003. 13(9): p. 2090–2097.

    Google Scholar 

  41. Wang, C.Y., et al., Fabrication of highly ordered microporous thin films by PS-b-PAA self-assembly and investigation of their tunable surface properties. Journal of Materials Chemistry, 2008. 18(6): p. 683–690.

    Google Scholar 

  42. Bolognesi, A., et al., Nanophase Separation in Polystyrene-Polyfluorene Block Copolymers Thin Films Prepared through the Breath Figure Procedure. Langmuir, 2009. 25(9): p. 5333–5338.

    Google Scholar 

  43. Stenzel, M.H. and T.P. Davis, Biomimetic Honeycomb-Structured Surfaces Formed from Block Copolymers Incorporating Acryloyl Phosphorylcholine. Australian Journal of Chemistry, 2003. 56(10): p. 1035–1038.

    Google Scholar 

  44. Ke, B.B., et al., Controlled synthesis of linear and comb-like glycopolymers for preparation of honeycomb-patterned films. Polymer, 2010. 51(10): p. 2168–2176.

    Google Scholar 

  45. Escalé, P., et al., Synthetic route effect on macromolecular architecture: from block to gradient copolymers based on acryloyl galactose monomer using RAFT polymerization. Macromolecules, 2011. 44 (15): p. 5911–5919.

    Google Scholar 

  46. Dong, W., et al., Honeycomb-Structured Microporous Films Made from Hyperbranched Polymers by the Breath Figure Method. Langmuir, 2008. 25(1): p. 173–178.

    Google Scholar 

  47. Ting, S.R.S., et al., Lectin recognizable biomaterials synthesized via nitroxide-mediated polymerization of a methacryloyl galactose monomer. Macromolecules, 2009. 42(24): p. 9422–9434.

    Google Scholar 

  48. Muñoz-Bonilla, A., et al., Fabrication of honeycomb-structured porous surfaces decorated with glycopolymers. Langmuir, 2010. 26(11): p. 8552–8558.

    Google Scholar 

  49. de Leon, A.S., et al., Control of the chemistry outside the pores in honeycomb patterned films. Polymer Chemistry, 2013. 4(14): p. 4024–4032.

    Google Scholar 

  50. de León, A.S., et al., Hierarchically structured multifunctional porous interfaces through water templated self-assembly of ternary systems. Langmuir, 2012.

    Google Scholar 

  51. De León, A.S., et al., Fabrication of structured porous films by breath figures and phase separation processes: Tuning the chemistry and morphology inside the pores using click chemistry. ACS Applied Materials and Interfaces, 2013. 5(9): p. 3943–3951.

    Google Scholar 

  52. Ge, W. and C. Lu, Hierarchical honeycomb patterns with tunable microstructures: Controllable fabrication and application as replication templates. Soft Matter, 2011. 7(6): p. 2790–2796.

    Google Scholar 

  53. Böker, A., et al., Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials, 2004. 3(5): p. 302–306.

    Google Scholar 

  54. Vohra, V., et al., Multilevel Organization in Hybrid Thin Films for Optoelectronic Applications. Langmuir, 2009. 25(20): p. 12019–12023.

    Google Scholar 

  55. Sun, H., H. Li, and L. Wu, Micro-patterned polystyrene surfaces directed by surfactant-encapsulated polyoxometalate complex via breath figures. Polymer, 2009. 50(9): p. 2113–2122.

    Google Scholar 

  56. Nurmawati, M.H., et al., Hierarchical Self-Organization of Nanomaterials into Two-Dimensional Arrays Using Functional Polymer Scaffold. Advanced Functional Materials, 2008. 18(20): p. 3213–3218.

    Google Scholar 

  57. Li, X., et al., A Bottom-Up Approach To Fabricate Patterned Surfaces with Asymmetrical TiO2 Microparticles Trapped in the Holes of Honeycomblike Polymer Film. Journal of the American Chemical Society, 2011. 133(11): p. 3736–3739.

    Google Scholar 

  58. Ke, B.-B., et al., Tunable Assembly of Nanoparticles on Patterned Porous Film. Langmuir, 2010. 26(20): p. 15982–15988.

    Google Scholar 

  59. Zhang, Y. and C. Wang, Micropatterning of Proteins on 3D Porous Polymer Film Fabricated by Using the Breath-Figure Method. Advanced Materials, 2007. 19(7): p. 913–916.

    Google Scholar 

  60. Ke, B.-B., L.-S. Wan, and Z.-K. Xu, Controllable construction of carbohydrate microarrays by site-directed grafting on self-organized porous films. Langmuir, 2010. 26(11): p. 8946–8952.

    Google Scholar 

  61. Hernandez-Guerrero, M., et al., Grafting thermoresponsive polymers onto honeycomb structured porous films using the RAFT process. Journal of Materials Chemistry, 2008. 18(39): p. 4718–4730.

    Google Scholar 

  62. Ke, B.B., et al., Selective layer-by-layer self-assembly on patterned porous films modulated by Cassie-Wenzel transition. Physical Chemistry Chemical Physics, 2011. 13(11): p. 4881–4887.

    Google Scholar 

  63. Roy, D., J.N. Cambre, and B.S. Sumerlin, Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science, 2010. 35(1–2): p. 278–301.

    Google Scholar 

  64. Liu, F. and M.W. Urban, Recent advances and challenges in designing stimuli-responsive polymers. Progress in Polymer Science, 2010. 35(1–2): p. 3–23.

    Google Scholar 

  65. Orlov, M., et al., pH-responsive thin film membranes from poly(2-vinylpyridine): water vapor-induced formation of a microporous structure. Macromolecules, 2007. 40(6): p. 2086–2091.

    Google Scholar 

  66. Escalé, P., et al., pH sensitive hierarchically self-organized bioinspired films. Macromolecular Rapid Communications, 2011. 32(14): p. 1072–1076.

    Google Scholar 

  67. Bormashenko, E., et al., Single-step technique allowing formation of microscaled thermally stable polymer honeycomb reliefs demonstrating reversible wettability. Polymers for Advanced Technologies, 2011. 22(1): p. 94–98.

    Google Scholar 

  68. Cui, L., et al., Polymer surfaces with reversibly switchable ordered morphology. Langmuir, 2005. 21(25): p. 11696–11703.

    Google Scholar 

  69. Su, B.-L., C. Sanchez, and X.-Y. Yang, Insights into Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science, in Hierarchically Structured Porous Materials. 2011, Wiley-VCH Verlag GmbH & Co. KGaA. p. 1–27.

    Google Scholar 

  70. Zhu, H.X., T.X. Fan, and D. Zhang, On the Optimal Mechanical Properties of Hierarchical Biomaterials, in Hierarchically Structured Porous Materials. 2011, Wiley-VCH Verlag GmbH & Co. KGaA. p. 621–631.

    Google Scholar 

  71. Hayakawa, T. and S. Horiuchi, From angstroms to micrometers: self-organized hierarchical structure within a polymer film. Angewandte Chemie, 2003. 115(20): p. 2387–2391.

    Google Scholar 

  72. Escalé, P., et al., Hierarchical structures based on self-assembled diblock copolymers within honeycomb micro-structured porous films. Soft Matter, 2010. 6(14): p. 3202–3210.

    Google Scholar 

  73. Muñoz-Bonilla, A., et al., Self-organized hierarchical structures in polymer surfaces: self-assembled nanostructures within breath figures. Langmuir, 2009. 25(11): p. 6493–6499.

    Google Scholar 

  74. Geldhauser, T., et al., Influence of the relative humidity on the demixing of polymer blends on prepatterned substrates. Macromolecules, 2009. 43(2): p. 1124–1128.

    Google Scholar 

  75. Hecht, U., C.M. Schilz, and M. Stratmann, Influence of relative humidity during film formation processes on the structure of ultrathin polymeric films. Langmuir, 1998. 14(23): p. 6743–6748.

    Google Scholar 

  76. Boker, A., et al., Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials, 2004. 3(5): p. 302–306.

    Google Scholar 

  77. Samanta, S., et al., Multifunctional porous poly(vinylidene fluoride)-graft-poly(butyl methacrylate) with good Li + ion conductivity. Macromolecular Chemistry and Physics, 2011. 212(2): p. 134–149.

    Google Scholar 

  78. Ma, H., et al., Fabrication of freestanding honeycomb films with through-pore structures via air/water interfacial self-assembly. Chemical Communications, 2011. 47(4): p. 1154–1156.

    Google Scholar 

  79. Deleuze, C., et al., Hierarchically structured hybrid honeycomb films via micro to nanosized building blocks. Soft Matter, 2012. 8(33): p. 8559–8562.

    Google Scholar 

  80. Madej, W., et al., Breath figures in polymer and polymer blend films spin-coated in dry and humid ambience. Langmuir, 2008. 24(7): p. 3517–3524.

    Google Scholar 

  81. Connal, L.A. and G.G. Qiao, Preparation of porous poly(dimethylsiloxane)-based honeycomb materials with hierarchal surface features and their use as soft-lithography templates. Advanced Materials, 2006. 18(22): p. 3024–3028.

    Google Scholar 

  82. Connal, L.A., et al., Fabrication of reversibly crosslinkable, 3-dimensionally conformal polymeric microstructures. Advanced Functional Materials, 2008. 18(20): p. 3315–3322.

    Google Scholar 

  83. Connal, L.A. and G.G. Qiao, Honeycomb coated particles: porous doughnuts, golf balls and hollow porous pockets. Soft Matter, 2007. 3(7): p. 837–839.

    Google Scholar 

  84. Ding, J., et al., Constructing honeycomb micropatterns on nonplanar substrates with high glass transition temperature polymers. Journal of Colloid and Interface Science, 2012. 380: p. 99–104.

    Google Scholar 

  85. Greiser, C., S. Ebert, and W.A. Goedel, Using breath figure patterns on structured substrates for the preparation of hierarchically structured microsieves. Langmuir, 2008. 24(3): p. 617–620.

    Google Scholar 

  86. Kwak, G., et al., Nanoporous, honeycomb-structured network fibers spun from semiflexible, ultrahigh molecular weight, disubstituted aromatic polyacetylenes: Superhierarchical structure and unique optical anisotropy. Chemistry of Materials, 2006. 18(23): p. 5537–5542.

    Google Scholar 

  87. Zheng, J., et al., Construction of hierarchical structures by electrospinning or electrospraying. Polymer, 2012. 53(2): p. 546–554.

    Google Scholar 

  88. Fashandi, H. and M. Karimi, Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere. Polymer, 2012. 53(25): p. 5832–5849.

    Google Scholar 

  89. Nishida, J., et al., Preparation of self-organized micro-patterned polymer films having cell adhesive ligands. Polymer Journal, 2002. 34(3): p. 166–174.

    Google Scholar 

  90. Stenzel-Rosenbaum, M.H., et al., Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques. Angewandte Chemie International Edition, 2001. 40(18): p. 3428–3432.

    Google Scholar 

  91. Min, E.H., et al., Thermo-Responsive Glycopolymer Chains Grafted onto Honeycomb Structured Porous Films via RAFT Polymerization as a Thermo-Dependent Switcher for Lectin Concanavalin A Conjugation. Journal of Polymer Science Part a-Polymer Chemistry, 2010. 48(15): p. 3440–3455.

    Google Scholar 

  92. Min, E., K.H. Wong, and M.H. Stenzel, Microwells with Patterned Proteins by a Self-Assembly Process Using Honeycomb-Structured Porous Films. Advanced Materials, 2008. 20(18): p. 3550–3556.

    Google Scholar 

  93. Chen, P.-C., et al., Honeycomb-Patterned Film Segregated with Phenylboronic Acid for Glucose Sensing. Langmuir, 2011. 27(20): p. 12597–12605.

    Google Scholar 

  94. Wang, B., et al., Glucose-Responsive Micelles from Self-Assembly of Poly(ethylene glycol)-b-Poly(acrylic acid-co-acrylamidophenylboronic acid) and the Controlled Release of Insulin. Langmuir, 2009. 25(21): p. 12522–12528.

    Google Scholar 

  95. Liu, Y., et al., Specific Detection of d-Glucose by a Tetraphenylethene-Based Fluorescent Sensor. Journal of the American Chemical Society, 2010. 133(4): p. 660–663.

    Google Scholar 

  96. Matsumoto, A., R. Yoshida, and K. Kataoka, Glucose-Responsive Polymer Gel Bearing Phenylborate Derivative as a Glucose-Sensing Moiety Operating at the Physiological pH. Biomacromolecules, 2004. 5(3): p. 1038–1045.

    Google Scholar 

  97. Beattie, D., et al., Honeycomb-structured porous films from polypyrrole-containing block copolymers prepared via RAFT polymerization as a scaffold for cell growth. Biomacromolecules, 2006. 7(4): p. 1072–1082.

    Google Scholar 

  98. Duan, S., et al., Osteocompatibility evaluation of poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene with honeycomb-patterned surface topography. Journal of Biomedical Materials Research Part A, 2013. 101A(2): p. 307–317.

    Google Scholar 

  99. Nishikawa, T., et al., Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates. Materials Science and Engineering: C, 1999. 8–9(0): p. 495–500.

    Google Scholar 

  100. Tanaka, M., et al., Design of novel biointerfaces (II). Fabrication of self-organized porous polymer film with highly uniform pores. Bio-Medical Materials and Engineering, 2004. 14(4): p. 439–446.

    Google Scholar 

  101. Tsuruma, A., et al., Morphological changes in neurons by self-organized patterned films. e-Journal of Surface Science and Nanotechnology, 2005. 3.

    Google Scholar 

  102. Tanaka, M., et al., Control of hepatocyte adhesion and function on self-organized honeycomb-patterned polymer film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 284–285: p. 464–469.

    Google Scholar 

  103. Tanaka, M., et al., Effect of pore size of self-organized honeycomb-patterned polymer films on spreading, focal adhesion, proliferation, and function of endothelial cells. Journal of Nanoscience and Nanotechnology, 2007. 7(3): p. 763–772.

    Google Scholar 

  104. Yamamoto, S., et al., Relationship between adsorbed fibronectin and cell adhesion on a honeycomb-patterned film. Surface Science, 2006. 600(18): p. 3785–3791.

    Google Scholar 

  105. Tsuruma, A., et al., Control of neural stem cell differentiation on honeycomb films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313–314: p. 536–540.

    Google Scholar 

  106. Arai, K., et al., Effect of pore size of honeycomb films on the morphology, adhesion and cytoskeletal organization of cardiac myocytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313–314(0): p. 530–535.

    Google Scholar 

  107. Sato, T., et al., Effect of honeycomb-patterned surface topography on the function of mesenteric adipocytes. Journal of Biomaterials Science, Polymer Edition, 2010. 21: p. 1947–1956.

    Google Scholar 

  108. Wu, X. and S. Wang, Regulating MC3T3-E1 Cells on Deformable Poly(epsilon-caprolactone) Honeycomb Films Prepared Using a Surfactant-Free Breath Figure Method in a Water-Miscible Solvent. Acs Applied Materials & Interfaces, 2012. 4(9): p. 4966–4975.

    Google Scholar 

  109. Du, M., et al., Honeycomb self-assembled peptide scaffolds by the breath figure method. Chemistry—A European Journal, 2011. 17(15): p. 4238–4245.

    Google Scholar 

  110. Fukuhira, Y., et al., Prevention of postoperative adhesions by a novel honeycomb-patterned poly(lactide) film in a rat experimental model. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2008. 86B(2): p. 353–359.

    Google Scholar 

  111. Sanz de Leon, A., J. Rodríguez-Hernández, and A.L. Cortajarena, Honeycomb patterned surfaces functionalized with polypeptide sequences for recognition and selective bacterial adhesion. Biomaterials, 2013. 34(5): p. 1453–60.

    Google Scholar 

Download references

Acknowledgements

A M.-B. and JRH acknowledge financial support by the MINECO (Projects MAT2010-17016, MAT2010-21088-C03-01, and COST Action MP0904 SIMUFER). A M.-B. gratefully acknowledges the MINECO for her Juan de la Cierva postdoctoral contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Rodríguez-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muñoz-Bonilla, A., Rodríguez-Hernández, J. (2015). Honeycomb Structured Films Prepared by Breath Figures: Fabrication and Application for Biorecognition Purposes. In: Rodríguez-Hernández, J., Cortajarena, A. (eds) Design of Polymeric Platforms for Selective Biorecognition. Springer, Cham. https://doi.org/10.1007/978-3-319-17061-9_9

Download citation

Publish with us

Policies and ethics