Skip to main content

Polymer Replication Techniques

  • Chapter
  • First Online:
Design of Polymeric Platforms for Selective Biorecognition

Abstract

Direct nanopatterning of surfaces using lithographic methods, such as electron beam lithography (EBL) or photolithography, allows unique structures to be defined in a methodical, step-by-step manner that delivers fantastically high-quality results that cannot be obtained by any other means, but is generally unsuitable for mass production or requires substantial infrastructure and financial investment to make it suitable as is the case with optical lithography in the microelectronics industry. A more economical route to create large number of nanostructured devices lies in replication-based technology where a single master may give birth to many clones of itself, eliminating the need to repeat an entire fabrication process. These methods are gaining increasing interest where the resolution limit of optical lithography makes it harder to form the ever smaller structures that are desired and in other emerging application areas that also require nanoscale patterns, but do not have the volume required for the investment in advanced conventional systems. Examples of such applications include substrates for biochemical research such as cell growth, advanced lab-on-a-chip devices, integrated nanophotonic devices and hard disk storage devices. Developments in polymer-based replication technology have also been extensive for applications where conventional fabrication techniques are not well suited such as flexible display systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, J.-S., Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. Journal of Materials Chemistry, 2011. 21(37): p. 14097.

    Article  Google Scholar 

  2. Madou, M. J., Fundamentals of Microfabrication. 2nd ed. 2002: CRC Press.

    Google Scholar 

  3. Schift, H., Nanoimprint lithography: An old story in modern times? A review. Journal of Vacuum Science & Technology B, 2008. 26(2): p. 458.

    Article  Google Scholar 

  4. Guo, L. J., Nanoimprint Lithography: Methods and Material Requirements. Advanced Materials, 2007. 19(4): p. 495.

    Article  Google Scholar 

  5. Chou, S. Y., P. R. Krauss and P. J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Applied Physics Letters, 1995. 67(21): p. 3114.

    Article  Google Scholar 

  6. Austin, M. D., H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou, Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters 2004. 84: p. 5299.

    Article  Google Scholar 

  7. Hua, F., Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers and A. Shim, Polymer Imprint Lithography with Molecular-Scale Resolution. Nano Letters, 2004. 4(12): p. 2467.

    Article  Google Scholar 

  8. Haisma, J., M. V. K. vandenHeuvel and J. vandenBerg Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Tech. B, 1996. 14(6): p. 4124.

    Article  Google Scholar 

  9. Bailey, T. C., S. C. Johnson, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson and D. J. Resnick, Step and flash imprint lithography: an efficient nanoscale printing technology. Journal of Photopolymer Science and Technology 2002. 15(3): p. 481.

    Article  Google Scholar 

  10. Cheng, X. and L. J. Guo, One-step lithography for various size patterns with a hybrid mask-mold. Microelectronic Engineering 2004. 71: p. 288.

    Article  Google Scholar 

  11. Haatainen, T. and J. Ahopelto, Pattern transfer using step & stamp imprint lithography. Physica Scripta 2003. 67(4): p. 357.

    Article  Google Scholar 

  12. Makela, T., T. Haatainen, P. Majander and J. Ahopelto, Continuous roll to roll nanoimprinting of inherently conducting polyaniline. Microelectronic Engineering 2007. 84(5–8): p. 877.

    Article  Google Scholar 

  13. Guo, L. J. and S. H. Ahn, High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Advanced Materials 2008. 20: p. 2044.

    Article  Google Scholar 

  14. Ahn, S. H. and L. J. Guo, Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting. ACS Nano, 2009. 3(8): p. 2304.

    Article  Google Scholar 

  15. Vig, A. L., T. Makela, P. Majander, V. Lambertini, J. Ahopelto and A. Kristensen, Roll-to-roll fabricated lab-on-a-chip devices. Journal of Micromechanics and Microengineering, 2011. 21(3).

    Google Scholar 

  16. Moonen, P. F., I. Yakimets and J. Huskens, Fabrication of Transistors on Flexible Substrates: from Mass-Printing to High-Resolution Alternative Lithography Strategies. Advanced Materials, 2012. 24(41): p. 5526.

    Article  Google Scholar 

  17. Kumar, P. and S. Chand, Recent progress and future aspects of organic solar cells. Progress in Photovoltaics: Research and Applications, 2012. 20(4): p. 377.

    Article  Google Scholar 

  18. Kehagias, N., V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, F. Reuther, C. Schuster, M. Kubenz, G. Gruetzner and C. M. S. Torres, Submicron three-dimensional structures fabricated by reverse contact UV nanoimprint lithography. Journal of Vacuum Science and Technology B 2006. 24: p. 3002.

    Article  Google Scholar 

  19. Heilig, M., S. Giselbrecht, A. Guber and M. Worgull, Microthermoforming of nanostructured polymer films: a new bonding method for the integration of nanostructures in 3-dimensional cavities. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2010. 16(7): p. 1221.

    Google Scholar 

  20. Heilig, M., M. Schneider, H. Dinglreiter and M. Worgull, Technology of microthermoforming of complex three-dimensional parts with multiscale features. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2011. 17(4): p. 593.

    Google Scholar 

  21. Yang, C., X.-H. Yin and G.-M. Cheng, Microinjection molding of microsystem components: new aspects in improving performance. Journal of Micromechanics and Microengineering, 2013. 23(9): p. 093001.

    Article  Google Scholar 

  22. Giboz, J., T. Copponnex and P. Mélé, Microinjection molding of thermoplastic polymers: a review. Journal of Micromechanics and Microengineering, 2007. 17(6): p. R96.

    Article  Google Scholar 

  23. Zaouk, R., B. Y. Park and M. J. Madou, Fabrication of polydimethylsiloxane microfluidics using SU-8 molds. Methods Mol Biol, 2006. 321: p. 17.

    Google Scholar 

  24. Lee, L. H., R. Peerani, M. Ungrin, C. Joshi, E. Kumacheva and P. W. Zandstra, Micropatterning of human embryonic stem cells dissects the mesoderm and endoderm lineages. Stem cell research, 2009. 2(2): p. 155.

    Article  Google Scholar 

  25. Tee, S.-Y., J. Fu, C. S. Chen and P. A. Janmey, Cell Shape and Substrate Rigidity Both Regulate Cell Stiffness. Biophysical Journal, 2011. 100(5).

    Google Scholar 

  26. Gadegaard, N., S. Thoms, D. S. Macintyre, K. McGhee, J. Gallagher, B. Casey and C. D. W. Wilkinson, Arrays of nano-dots for cellular engineering. Microelectronic Engineering, 2003. 67–68: p. 162.

    Article  Google Scholar 

  27. Guo, L. J., Recent progress in nanoimprint technology and its applications. Journal of Physics D: Applied Physics 2004. 37: p. R123.

    Article  Google Scholar 

  28. Schift, H. and L. J. Heyderman, Nanorheology, in Alternative Lithography, C.M. Sotomayor Torres, Editor. 2003, Kluwer Academic/Plenum: New York.

    Google Scholar 

  29. Kristensen, A. and H. Schift. Springer Handbook of Nanotechnology. 2007: Springer.

    Google Scholar 

  30. Stefan, M. J., Versuche über die sheinbare adhäsion. Österreichische Akademie der Wissenschaften < Wein > /Mathematisch-Naturwissenschaftliche Klasse, 1874. 2(69:713): p. 735.

    Google Scholar 

  31. Yamada, K., M. Umetami, T. Tamura, Y. Tanaka, H. Kasa and J. Nishii, Antireflective structure imprinted on the surface of optical glass by SiC mold. Applied Surface Science 2009. 255: p. 4267.

    Article  Google Scholar 

  32. Taniguchi, J., Y. Tokano, I. Miyamoto, M. Komoro and H. Hiroshima, Diamond nanoimprint lithography. Nanotechnology, 2002. 13(5): p. 592.

    Article  Google Scholar 

  33. Mühlberger, M., I. Bergmair, A. Klukowska, A. Kolander, H. Leichtfried, E. Platzgummer, H. Loeschner, C. Ebm, G. Grützner and R. Schöftner, UV-NIL with working stamps made from ormostamp. Microelectronic Engineering 2009.

    Google Scholar 

  34. Park, S., H. Schift, C. Padeste, B. Schnyder, R. Kotz and J. Gobrecht, Anti-adhesive layers on nickel stamps for nanoimprint lithography. Microelectronic Engineering, 2004. 73–4: p. 196.

    Article  Google Scholar 

  35. Schift, H., S. Saxer, S. Park, C. Padeste, U. Pieles and J. Gobrecht, Controlled co-evaporation of silanes for nanoimprint stamps. Nanotechnology, 2005. 16(5): p. S171.

    Article  Google Scholar 

  36. Schulz, H., F. Osenberg, J. Engemann and H. C. Scheer, Mask fabrication by nanoimprint lithography using anti-sticking layers, in 16th European Conference on Mask Technology for Integrated Circuits and Microcomponents, U.F.W. Behringer, Editor. 2000, Spie-Int Soc Optical Engineering: Bellingham. p. 244.

    Google Scholar 

  37. Guo, Y. H., G. Liu, X. L. Zhu and Y. C. Tian, Analysis of the demolding forces during hot embossing. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2007. 13(5–6): p. 411.

    Google Scholar 

  38. Matschuk, M., H. Bruus and N. B. Larsen, Nanostructures for all-polymer microfluidic systems. Microelectronic Engineering, 2010. 87(5–8): p. 1379.

    Article  Google Scholar 

  39. Beck, M., M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil and L. Montelius, Improving stamps for 10 nm level wafer scale nanoimprint lithography. Microelectronic Engineering, 2002. 61–2: p. 441.

    Article  Google Scholar 

  40. Park, S., C. Padeste, H. Schift and J. Gobrecht, Nanostructuring of anti-adhesive layers by hot embossing lithography. Microelectronic Engineering, 2003. 67–68(0): p. 252.

    Article  Google Scholar 

  41. Wu, C. C., S. L. C. Hsu and I. L. Lo, Fabrication and Application of Polyimide Plastic Molds for Nanoimprint Lithography. Journal of Nanoscience and Nanotechnology, 2010. 10(10): p. 6446.

    Article  Google Scholar 

  42. Moresco, J., C. H. Clausen and W. Svendsen, Improved anti-stiction coating of SU-8 molds. Sensors and Actuators B-Chemical, 2010. 145(2): p. 698.

    Google Scholar 

  43. Kim, H. H., S. G. Park, E. H. Lee, S. G. Lee and B. H. O, Durability of nitrided fluorocarbon polymer films for nanoimprint lithography. Thin Solid Films, 2011. 519(16): p. 5490.

    Article  Google Scholar 

  44. Kumar, G., H. X. Tang and J. Schroers, Nanomoulding with amorphous metals. Nature, 2009. 457(7231): p. 868.

    Article  Google Scholar 

  45. Heckele, M. and W. K. Schomburg, Review on micro molding of thermoplastic polymers. Journal of Micromechanics and Microengineering, 2004. 14: p. R1.

    Article  Google Scholar 

  46. Prucker, O., S. Christian, H. Bock, J. Rühe, C. W. Frank and W. Knoll, On the glass transition in ultrathin polymer films of different molecular architecture. Macromolecular Chemistry and Physics 1998. 199(1435–1444).

    Article  Google Scholar 

  47. Forrest, J. A. and K. Dalnoki-Veress, The glass transition in thin polymer films. Advances in Colloid and Interface Science 2001. 94: p. 167.

    Article  Google Scholar 

  48. Cangialosi, D., M. Wübbenhorst, J. Groenewold, E. Mendes, H. Schut, A. van and S. J. Picken, Physical aging of polycarbonate far below the glass transition temperature: Evidence for the diffusion mechanism. Physical Review B, 2004. 70: p. 224213.

    Article  Google Scholar 

  49. Nunes, P. S., P. D. Ohlsson, O. Ordeig and J. P. Kutter, Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluidics and Nanofluidics 2010. 9(2–3): p. 145.

    Article  Google Scholar 

  50. Tokyo Ohka Kogyo Co., L. http://www.tok.co.jp.

  51. Nanonex. www.nanonex.com.

  52. Yu, Z., L. Chen, W. Wu, H. Ge and S. Y. Chou, Fabrication of nanoscale gratings with reduced line endge roughness using nanoimprint lithography. Journal of Vacuum Science and Technology B 2003. 21: p. 2089.

    Article  Google Scholar 

  53. Wu, C.-C., S. L.-C. Hsu and W.-C. Liao, A photo-polymerization resist for UV nanoimprint lithography. Microelectric engineering, 2009. 86: p. 325.

    Google Scholar 

  54. Abgrall, P., V. Conedera, H. C. A.-M. Gue and N.-T. Nguyen, SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis, 2007. 28: p. 4539.

    Article  Google Scholar 

  55. Christiansen, M. B. 2009, DTU Nanotech, Technical University of Denmark.

    Google Scholar 

  56. EV Group, A. http://www.evgroup.com.

  57. Süss Microtec AG, G. http://www.suss.com.

  58. Jenoptik Mikrotechnik GmbH, G. http://www.jo-mt.com.

  59. Molecular Imprints, I. www.molecularimprints.com.

  60. Scivax corporation, J. http://www.scivax.com.

  61. Obducat AB, S. http://www.obducat.com.

  62. Heyderman, L. J., H. Schift, C. David, J. Gobrecht and T. Schweizer, Flow behaviour of thin polymer films used for hot embossing lithography. Microelectronic Engineering, 2000. 54(3–4): p. 229.

    Article  Google Scholar 

  63. Schift, H., L. J. Heyderman, M. A. der and J. Gobrecht, Pattern formation in hot embossing of thin films. Nanotechnology, 2001. 12(2): p. 173.

    Google Scholar 

  64. Scheer, H.-C. and H. Schulz, A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectronic Engineering 2001. 56: p. 311.

    Article  Google Scholar 

  65. Perret, C., C. Gourgon, F. Lazzarino, J. Tallal, S. Landis and R. Pelzer, Characterization of 8-in. wafers printed by nanoimprint lithography. Microelectronic Engineering 2004. 73–74: p. 172.

    Article  Google Scholar 

  66. Beck, M., F. Persson, P. Carlberg, M. Graczyk, I. Maximov, T. G. I. Ling and L. Montelius, Nanoelectrochemical transducers for (bio-) chemical sensor applications fabricated by nanoimprint lithography. Microelectronic Engineering 2004. 73–74: p. 837.

    Article  Google Scholar 

  67. Lebib, A., Y. Chen, J. Bourneix, F. Carcenac, E. Cambril, L. Couraud and H. Launois, Nanoimprint lithography for a large area pattern replication. Microelectronic Engineering 1999. 46: p. 319.

    Article  Google Scholar 

  68. Heidari, B., I. Maximov and L. Montelius, Nanoimprint at the 6 in. wafer scale. Journal of Vacuum Science and Technology B 2000. 18(6): p. 3557.

    Article  Google Scholar 

  69. Li, M., L. Chen, W. Zhang and S. Y. Chou, Pattern transfer fidelity of nanoimprint lithography on six-inch wafers. Nanotechnology, 2003. 14(1): p. 33.

    Article  Google Scholar 

  70. Schulz, H., M. Wissen and H.-C. Scheer, Local mass transport and its effect on global pattern replication during hot embossing. Microelectronic Engineering 2003. 67–68: p. 657.

    Article  Google Scholar 

  71. Merino, S., H. Schift, A. Retolaza and T. Haatainen, The use of automatic demolding in nanoimprint lithography processes. Microelectronic Engineering 2007. 84: p. 958.

    Article  Google Scholar 

  72. Senturia, S. D., Microsystem Design. 2001: Kluwer Academic.

    Google Scholar 

  73. Young, W. C., Roark’s Formulas for Stress & Strain. 1989: McGraw-Hill.

    Google Scholar 

  74. Plachetka, U., M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner and H. Kurz, Wafer scale patterning by soft UV-nanoimprint lithography. Microelectronic Engineering 2004. 73–74: p. 167.

    Article  Google Scholar 

  75. Khang, D.-Y., H. Kang, T.-I. Kim and H. H. Lee, Low-pressure nanoimprint lithography. Nano Letters 2004. 4(4): p. 633.

    Article  Google Scholar 

  76. Tormen, M., T. Borzenko, G. Schmidt, J. Liu and L. W. Molenkamp, Thermocurable polymers as resists for imprint lithography. Electronics Letters 2000. 36(11): p. 983.

    Article  Google Scholar 

  77. Khang, D.-Y. and H. H. Lee, Wafer-scale sub-micron lithography. Applied Physics Letters 1999. 75(17): p. 2599.

    Article  Google Scholar 

  78. Leveder, T., S. Landis, L. Davoust and C. Gourgon, Optimization of demolding temperature for throughput improvement of nanoimprint lithography. Microelectronic Engineering 2007. 84: p. 953.

    Article  Google Scholar 

  79. Lee, J. C., I. C. Leu, K. L. Lai and M. H. Hon, Hot embossing by joule heating. Journal of Vacuum Science and Technology B 2008. 26(1): p. 260.

    Article  Google Scholar 

  80. Tormen, M., R. Malureanu, R. H. Pedersen, L. Lorenzen, K. H. Rasmussen, C. J. Lüscher, A. Kristensen and O. Hansen, Fast thermal nanoimprint lithography by a stamp with integrated heater. Microelectric Engineering, 2008. 85(5–6): p. 1229.

    Article  Google Scholar 

  81. Kimerling, T. E., W. Liu, B. H. Kim and D. Yao, Rapid hot embossing of polymer microfeatures. Microsystem Technologies 2006. 12: p. 730.

    Article  Google Scholar 

  82. Chang, J.-H. and S.-Y. Yang, Development of fluid-based heating and pressing systems for micro hot embossing. Microsystem Technologies 2005. 11: p. 396.

    Article  Google Scholar 

  83. Grigaliunas, V., S. Tamulevicius, M. Muehlberger, D. Jucius, A. Guobiene, V. Kopustinskas and A. Gudonyte, Nanoimprint lithography using IR laser irradiation. Applied Surface Science 2006. 253: p. 646.

    Article  Google Scholar 

  84. Hong, S.-K., Y.-M. Heo and J. Kang, Replication of polymeric micro patterns by rapid thermal pressing with induction heating apparatus. Proceeding of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, January 6–9, 2008, Sanya, China, 2008: p. 911.

    Google Scholar 

  85. Pranov, H., H. K. Rasmussen, N. B. Larsen and N. Gadegaard, On the injection molding of nanostructured polymer surfaces. Polymer Engineering & Science, 2006. 46(2): p. 160.

    Article  Google Scholar 

  86. Macintyre, D. and S. Thoms, The fabrication of high resolution features by mould injection. Microelectronic Engineering, 1998. 42: p. 211.

    Article  Google Scholar 

  87. Schift, H., C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Köppel and L. Scandella, Nanoreplication in polymers using hot embossing and injection molding. Microelectronic Engineering, 2000. 53(1–4): p. 171.

    Article  Google Scholar 

  88. Gadegaard, N., S. Mosler and N. B. Larsen, Biomimetic Polymer Nanostructures by Injection Molding. Macromolecular Materials and Engineering, 2003. 288(1): p. 76.

    Article  Google Scholar 

  89. Yoon, S.-h., C. Srirojpinyo, J. S. Lee, J. L. Mead, S. Matsui and C. M. F. Barry. Evaluation of novel tooling for nanoscale injection molding. in Proc. SPIE. 2005.

    Google Scholar 

  90. Zhao, J., R. Ong, G. Chen, Y. K. Juay, F. L. Ng, M. W. Lee and C. H. Kua. Development of rapid manufacturing technology of polymer microfluidic devices by micro moulding using silicon mould inserts. in Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, Pts a and B. 2008. New York: Amer Soc Mechanical Engineers.

    Google Scholar 

  91. Viana, J., Development of the skin layer in injection moulding: phenomenological model. Polymer, 2004. 45(3): p. 993.

    Article  Google Scholar 

  92. Yao, D. and B. Kim, Development of rapid heating and cooling systems for injection molding applications. Polymer Engineering & Science, 2002. 42(12): p. 2471.

    Article  Google Scholar 

  93. Chang, P.-C. and S.-J. Hwang, Experimental investigation of infrared rapid surface heating for injection molding. Journal of Applied Polymer Science, 2006. 102(4): p. 3704.

    Article  Google Scholar 

  94. Kim, Y., Y. Choi and S. Kang, Replication of high density optical disc using injection mold with MEMS heater. Microsystem Technologies, 2005. 11(7): p. 464.

    Article  Google Scholar 

  95. Michaeli, W. and F. Klaiber, Development of a system for laser-assisted molding of micro- and nanostructures. Journal of Vacuum Science & Technology B, 2009. 27(3): p. 1323.

    Article  Google Scholar 

  96. Bekesi, J., J. J. J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann and P. Simon, Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds. Applied Physics A-Materials Science & Processing, 2010. 99(4): p. 691.

    Article  Google Scholar 

  97. Keun, P. and L. Sang-Ik, Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features. Journal of Micromechanics and Microengineering, 2010. 20(3): p. 035002.

    Article  Google Scholar 

  98. Kim, S., C.-S. Shiau, B. H. Kim and D. Yao, Injection Molding Nanoscale Features with the Aid of Induction Heating. Polymer-Plastics Technology and Engineering, 2007. 46(11): p. 1031.

    Article  Google Scholar 

  99. Yoo, Y. E., T. H. Kim, D. S. Choi, S. M. Hyun, H. J. Lee, K. H. Lee, S. K. Kim, B. H. Kim, Y. H. Seo, H. G. Lee and J. S. Lee, Injection molding of a nanostructured plate and measurement of its surface properties. Current Applied Physics, 2009. 9(2, Supplement 1): p. e12.

    Article  Google Scholar 

  100. Wang, G., G. Zhao, H. Li and Y. Guan, Research on a New Variotherm Injection Molding Technology and its Application on the Molding of a Large LCD Panel. Polymer-Plastics Technology and Engineering, 2009. 48(7): p. 671.

    Article  Google Scholar 

  101. Lin, H. Y., C. H. Chang and W. B. Young, Experimental Study on the Filling of Nano Structures with Infrared Mold Surface Heating. International Polymer Processing, 2011. 26(1): p. 73.

    Article  Google Scholar 

  102. Yoon, S.-H., P. Palanisamy, P. Padmanabha, J. L. Mead and C. M. F. Barry. Comparison of Tooling Materials in Injection Molding of Microscale Features. in ASME Conference. 2009: ASME.

    Google Scholar 

  103. Kim, Y., S.-H. Yoon, J. S. Lee, S. Johnston, J. L. Mead and C. M. F. Barry. Performance of Hybrid Tooling in Micro Injection Molding. in Proc. Ann. Tech. Conf. Soc. Plast. Eng. 2010.

    Google Scholar 

  104. Yoon, S.-h., J. Lee, K. Park, J. L. Mead, S. Matsui and C. M. F. Barry. Critical factors for nanoscale injection molding. 2006: SPIE.

    Google Scholar 

  105. Yoon, S.-H., P. Padmanabha, J. S. Lee, J. L. Mead, C. M. F. Barry, N.-G. Cha, A. A. Busnaina and K. Park. Evaluation of Metal-Polymer Hybrid Tooling for Micro-Injection Moulding. in Proc. Ann. Tech. Conf. Soc. Plast. Eng. 2008. Milwaukee, WI.

    Google Scholar 

  106. Yoon, S.-H., C. M. F. Barry, J. L. Mead, N.-G. Cha and A. A. Busnaina, Methods for Forming Metal-Polymer Hybrid Tooling for Forming Parts Having Micro Features. 2011, University of Massachusetts Lowel, Northeastern University: USA.

    Google Scholar 

  107. Hansen, T. S., D. Selmeczi and N. B. Larsen, Fast prototyping of injection molded polymer microfluidic chips. Journal of Micromechanics and Microengineering, 2010. 20(1): p. 8.

    Article  Google Scholar 

  108. Park, S. H., W. I. Lee, S. N. Moon, Y. E. Yoo and Y. H. Cho, Injection molding micro patterns with high aspect ratio using a polymeric flexible stamper. Express Polymer Letters, 2011. 5(11): p. 950.

    Article  Google Scholar 

  109. Kim, S. H., J. H. Jeong and J. R. Youn, Nanopattern insert molding. Nanotechnology, 2010. 21(20): p. 205302.

    Article  Google Scholar 

  110. Stormonth-Darling, J. M. and N. Gadegaard, Injection Moulding Difficult Nanopatterns with Hybrid Polymer Inlays. Macromolecular Materials and Engineering, 2012. 297(11): p. 1075.

    Article  Google Scholar 

  111. Griffiths, C. A., S. Bigot, E. Brousseau, M. Worgull, M. Heckele, J. Nestler and J. Auerswald, Investigation of polymer inserts as prototyping tooling for micro injection moulding. The International Journal of Advanced Manufacturing Technology, 2010. 47(1–4): p. 111.

    Article  Google Scholar 

  112. Zhang, N., C. J. Byrne, D. J. Browne and M. D. Gilchrist, Towards nano-injection molding. Materials Today, 2012. 15(5): p. 216.

    Article  Google Scholar 

  113. Yoon, S.-H., N.-G. Cha, J. S. Lee, J.-G. Park, D. J. Carter, J. L. Mead and C. M. F. Barry, Effect of processing parameters, antistiction coatings, and polymer type when injection molding microfeatures. Polymer Engineering & Science, 2010. 50(2): p. 411.

    Article  Google Scholar 

  114. Matschuk, M. and N. B. Larsen, Injection molding of high aspect ratio sub-100 nm nanostructures. Journal of Micromechanics and Microengineering, 2013. 23(2): p. 025003.

    Article  Google Scholar 

  115. Miikkulainen, V., M. Suvanto, T. A. Pakkanen, S. Siitonen, P. Karvinen, M. Kuittinen and H. Kisonen, Thin films of MoN, WN, and perfluorinated silane deposited from dimethylamido precursors as contamination resistant coatings on micro-injection mold inserts. Surface and Coatings Technology, 2008. 202(21): p. 5103.

    Article  Google Scholar 

  116. Cunha, L., M. Andritschky, K. Pischow, Z. Wang, A. Zarychta, A. S. Miranda and A. M. Cunha, Performance of chromium nitride and titanium nitride coatings during plastic injection moulding. Surface and Coatings Technology, 2002. 153(2–3): p. 160.

    Article  Google Scholar 

  117. Griffiths, C. A., S. S. Dimov, E. B. Brousseau, C. Chouquet, J. Gavillet and S. Bigot, Investigation of surface treatment effects in micro-injection-moulding. The International Journal of Advanced Manufacturing Technology, 2010. 47(1–4): p. 99.

    Article  Google Scholar 

  118. Houle, F. A., S. Raoux, D. C. Miller, C. Jahnes and S. Rossnagel, Metal-containing release layers for use with UV-cure nanoimprint lithographic template materials. Journal of Vacuum Science & Technology B, 2008. 26(4): p. 1301.

    Article  Google Scholar 

  119. Stormonth-Darling, J. M., R. H. Pedersen, C. How and N. Gadegaard, Injection moulding of ultra high aspect ratio nanostructures using coated polymer tooling. Journal of Micromechanics and Microengineering, 2014. REVISED MANUSCRIPT SUBMITTED.

    Google Scholar 

  120. Senn, T., J. P. Esquivel, N. Sabaté and B. Löchel, Fabrication of high aspect ratio nanostructures on 3D surfaces. Microelectronic Engineering, 2011. 88(9): p. 3043.

    Article  Google Scholar 

  121. Engel, Y., J. D. Schiffman, J. M. Goddard and V. M. Rotello, Nanomanufacturing of biomaterials. Materials Today, 2012. 15(11): p. 478.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaj Gadegaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stormonth-Darling, J., Pedersen, R., Gadegaard, N. (2015). Polymer Replication Techniques. In: Rodríguez-Hernández, J., Cortajarena, A. (eds) Design of Polymeric Platforms for Selective Biorecognition. Springer, Cham. https://doi.org/10.1007/978-3-319-17061-9_6

Download citation

Publish with us

Policies and ethics