Skip to main content

Biopatterns Created Using Colloidal Templates

  • Chapter
  • First Online:
Design of Polymeric Platforms for Selective Biorecognition

Abstract

Uniformly dispersed colloidal particles can be self-assembled into highly ordered two-dimensional (2D) and three-dimensional (3D) assemblies, which provide an easily accessible template for protein patterning of a length scale typically on hundreds of nanometres. This chapter aims to provide a brief overview on this protein patterning technique and illustrates the applications of both the 2D and 3D colloidal templates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deckman, H.W. and J.H. Dunsmuir, NATURAL LITHOGRAPHY. Applied Physics Letters, 1982. 41(4): p. 377–379.

    Article  Google Scholar 

  2. Gates, B., S.H. Park, and Y.N. Xia, Tuning the photonic bandgap properties of crystalline arrays of polystyrene beads by annealing at elevated temperatures. Advanced Materials, 2000. 12(9): p. 653- +.

    Article  Google Scholar 

  3. Holtz, J.H. and S.A. Asher, Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 1997. 389(6653): p. 829–832.

    Article  Google Scholar 

  4. Kulinowski, K.M., et al., Porous metals from colloidal templates. Advanced Materials, 2000. 12(11): p. 833–838.

    Article  Google Scholar 

  5. Li, Q., et al., Porous Networks Through Colloidal Templates. Topics in Current Chemistry, 2009. 287: p. 135–180.

    Article  Google Scholar 

  6. Marquez, M. and B.P. Grady, The use of surface tension to predict the formation of 2D arrays of latex spheres formed via the Langmuir-Blodgett-like technique. Langmuir, 2004. 20(25): p. 10998–11004.

    Article  Google Scholar 

  7. Wright, J.P., et al., Ultraflat ternary nanopatterns fabricated using colloidal lithography. Advanced Materials, 2006. 18(4): p. 421- +.

    Article  Google Scholar 

  8. Trujillo, N.J., S.H. Baxamusa, and K.K. Gleason, Grafted Functional Polymer Nanostructures Patterned Bottom-Up by Colloidal Lithography and Initiated Chemical Vapor Deposition (iCVD). Chemistry of Materials, 2009. 21(4): p. 742–750.

    Article  Google Scholar 

  9. Choi, D.G., et al., Colloidal lithographic nanopatterning via reactive ion etching. Journal of the American Chemical Society, 2004. 126(22): p. 7019–7025.

    Article  Google Scholar 

  10. Singh, G., et al., Highly Ordered Nanometer-Scale Chemical and Protein Patterns by Binary Colloidal Crystal Lithography Combined with Plasma Polymerization. Advanced Functional Materials, 2011. 21(3): p. 540–546.

    Article  Google Scholar 

  11. Hou, J., et al., Bio-Inspired Photonic-Crystal Microchip for Fluorescent Ultratrace Detection. Angewandte Chemie-International Edition, 2014. 53(23): p. 5791–5795.

    Article  Google Scholar 

  12. Yi, D.K., et al., Colloid Lithography-Induced Polydimethylsiloxane Microstructures and their Application to Cell Patterning. Biotechnology Letters, 2006. 28(3): p. 169–173.

    Article  Google Scholar 

  13. Wang, Y.C., et al., Stretched inverse opal colloid crystal substrates-induced orientation of fibroblast. Biomedical Materials, 2010. 5: p. 035011.

    Article  Google Scholar 

  14. Gleason, N.J., et al., Patterning Proteins and Cells Using Two-Dimensional Arrays of Colloids. Langmuir, 2003. 19(3): p. 513–518.

    Article  Google Scholar 

  15. Curtis, A. and M. Riehle, Tissue engineering: the biophysical background. Physics in Medicine and Biology, 2001. 46(4): p. R47.

    Article  Google Scholar 

  16. Jonas, U., et al., Colloidal assemblies on patterned silane layers. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(8): p. 5034–5039.

    Article  Google Scholar 

  17. Yang, P.D., et al., Hierarchically ordered oxides. Science, 1998. 282(5397): p. 2244–2246.

    Article  Google Scholar 

  18. Ekblad, T. and B. Liedberg, Protein adsorption and surface patterning. Current Opinion in Colloid & Interface Science, 2010. 15(6): p. 499–509.

    Article  Google Scholar 

  19. Li, Q., et al., The forces at work in collodial self-assembly: a review on fundamental interactions between collodial particels. Asia-Pacific Journal of Chemical Engineering, 2008. 3(3): p. 255–268.

    Article  Google Scholar 

  20. Dimitrov, A.S. and K. Nagayama, Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces. Langmuir, 1996. 12(5): p. 1303–1311.

    Article  Google Scholar 

  21. Yoshimura, H., et al., Two-dimensional crystallization. Nature, 1993. 361(6407): p. 26–26.

    Google Scholar 

  22. Wang, D.Y. and H. Mohwald, Rapid fabrication of binary colloidal crystals by stepwise spin-coating. Advanced Materials, 2004. 16(3): p. 244- +.

    Article  Google Scholar 

  23. Retsch, M., et al., Fabrication of Large-Area, Transferable Colloidal Monolayers Utilizing Self-Assembly at the Air/Water Interface. Macromolecular Chemistry and Physics, 2009. 210(3–4): p. 230–241.

    Article  Google Scholar 

  24. Zhou, Z., et al., Fabrication of binary colloidal crystals and non-close-packed structures by a sequential self-assembly method. Langmuir, 2007. 23(3): p. 1473–1477.

    Article  Google Scholar 

  25. Vogel, N., et al., Plasmon Hybridization in Stacked Double Crescents Arrays Fabricated by Colloidal Lithography. Nano Letters, 2011. 11(2): p. 446–454.

    Article  Google Scholar 

  26. Vogel, N., et al., Laterally Patterned Ultraflat Surfaces. Small, 2009. 5(7): p. 821–825.

    Article  Google Scholar 

  27. Singh, G., et al., Large-area protein patterns generated by ordered binary colloidal assemblies as templates. ACS nano 2011. 5(5): p. 3542.

    Article  Google Scholar 

  28. Denkov, N.D., et al., MECHANISM OF FORMATION OF 2-DIMENSIONAL CRYSTALS FROM LATEX-PARTICLES ON SUBSTRATES. Langmuir, 1992. 8(12): p. 3183–3190.

    Article  Google Scholar 

  29. Ramiro-Manzano, F., et al., Colloidal Crystal Thin Films Grown into Corrugated Surface Templates. Langmuir, 2010. 26(7): p. 4559–4562.

    Article  Google Scholar 

  30. Xia, Y.N., et al., Monodispersed colloidal spheres: Old materials with new applications. Advanced Materials, 2000. 12(10): p. 693–713.

    Article  Google Scholar 

  31. Yan, Q.F., Z.C. Zhou, and X.S. Zhao, Inward-growing self-assembly of colloidal crystal films on horizontal substrates. Langmuir, 2005. 21(7): p. 3158–3164.

    Article  Google Scholar 

  32. Li, Q., et al., Porous Networks Through Colloidal Templates, in Templates in Chemistry Iii, P. Broekmann, K.H. Dotz, and C.A. Schalley, Editors. 2009, Springer-Verlag Berlin: Berlin. p. 135–180.

    Google Scholar 

  33. Li, Q. and E. Eftekhari, Hierarchically Ordered Colloid Chrystals: Fabrication, Structures, and Functions, in Nanostructures: Properties, Production Methods and Applications, Y. Dong, Editor. 2013, Nova Science Publishers, Inc.: Hauppauge, NY, USA. p. 169–181.

    Google Scholar 

  34. Lau, K.H.A., et al., Self-assembly of Protein Nanoarrays on Block Copolymer Templates. Advanced Functional Materials, 2008. 18(20): p. 3148–3157.

    Article  Google Scholar 

  35. Li, Q., et al., The Effect of Fluid Flow on Selective Protein Adsorption on Polystyrene-block-Poly(methyl methacrylate) Copolymers. Langmuir, 2009. 25(20): p. 12144–12150.

    Article  Google Scholar 

  36. Fu, J., et al., 3D Hierarchically Ordered Composite Block Copolymer Hollow Sphere Arrays by Solution Wetting. Langmuir, 2010. 26(14): p. 12336–12341.

    Article  Google Scholar 

  37. Wang, J., et al., Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition. Journal of Materials Chemistry, 2008. 18(9): p. 981.

    Article  Google Scholar 

  38. Wang, L., et al., Binary Colloidal Crystals Fabricated with a Horizontal Deposition Method. Langmuir, 2009. 25(12): p. 6753–6759.

    Article  Google Scholar 

  39. Wang, J., et al., Preparation of multilayered trimodal colloid crystals and binary inverse opals. Journal of the American Chemical Society, 2006. 128(49): p. 15606–15607.

    Article  Google Scholar 

  40. Wolf, C. and Q. Li, Tunable Two-Dimensional Array Patterning of Antibody Annuli through Microsphere Templating. Langmuir, 2010. 26(14): p. 12068–12074.

    Article  Google Scholar 

  41. Vakarelski, I.U., et al., Assembly of Gold Nanoparticles into Microwire Networks Induced by Drying Liquid Bridges. Physical Review Letters, 2009. 102(5): p. 4.

    Article  Google Scholar 

  42. del Campo, A., et al., Surface modification with orthogonal photosensitive silanes for sequential chemical lithography and site-selective particle deposition. Angewandte Chemie-International Edition, 2005. 44(30): p. 4707–4712.

    Article  Google Scholar 

  43. Cassagneau, T. and F. Caruso, Inverse opals for optical affinity biosensing. Advanced Materials, 2002. 14: p. 1629–1633.

    Article  Google Scholar 

  44. Qian, W.P., et al., Three-dimensionally ordered macroporous polymer materials: An approach for biosensor applications. Langmuir, 2002. 18(11): p. 4526–4529.

    Article  Google Scholar 

  45. Choi, E., et al., Label-free specific detection of immunoglobulin G antibody using nanoporous hydrogel photonic crystals. Sensors and Actuators B-Chemical, 2013. 180: p. 107–113.

    Article  Google Scholar 

  46. Zhang, Y., S.W. Choi, and Y.N. Xia, Modifying the Pores of an Inverse Opal Scaffold With Chitosan Microstructures for Truly Three-Dimensional Cell Culture. Macromolecular Rapid Communications, 2012. 33(4): p. 296–301.

    Article  Google Scholar 

  47. Zhang, Y.S., S.W. Choi, and Y.N. Xia, Inverse opal scaffolds for applications in regenerative medicine. Soft Matter, 2013. 9(41): p. 9747–9754.

    Article  Google Scholar 

  48. Caruso, F. and H. Möhwald, Protein Multilayer Formation on Colloids through a Stepwise Self-Assembly Technique. Journal of the American Chemical Society, 1999. 121(25): p. 6039–6046.

    Article  Google Scholar 

  49. Caruso, F. and C. Schüler, Enzyme Multilayers on Colloid Particles: Assembly, Stability, and Enzymatic Activity. Langmuir, 2000. 16(24): p. 9595–9603.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Q., Askildsen, M., Eftekhari, E. (2015). Biopatterns Created Using Colloidal Templates. In: Rodríguez-Hernández, J., Cortajarena, A. (eds) Design of Polymeric Platforms for Selective Biorecognition. Springer, Cham. https://doi.org/10.1007/978-3-319-17061-9_12

Download citation

Publish with us

Policies and ethics