Skip to main content

Microfluidic Systems with Functional Patterned Surface for Biomedical Applications

  • 689 Accesses

Abstract

In the past decades, microfluidic systems become a promising technology for biomedical applications due to the recent intensive developments. Entire analytical protocol starting from sample pretreatment, sample/reagent manipulation, separation, reaction, detection, to analytical result display can be automatically conducted in such a single compact device. In order to further improve the analytical performance, consideration of functional patterned surfaces is necessary for specific and sensitive analyses. The aim of this chapter is to review recent developments of surface modification technologies in microfluidics. Based on the capability of the biorecognition, in-depth discussions of their biomedical applications including fluid manipulation, suppression of biomolecule adsorption, control of cellular behavior, and biosensing are provided. The current excellent combination of microfluidic technology and surface chemistry suggests a solid foundation for the development of practical biomedical applications.

Keywords

  • Microfluidics
  • Surface chemistry
  • Biorecognition
  • Functional patterned surfaces

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-17061-9_11
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-17061-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10
Fig. 11.11
Fig. 11.12
Fig. 11.13

References

  1. K.F. Lei, Microfluidic systems for diagnostic applications: A review. JALA 2012, 17, 330–347.

    Google Scholar 

  2. K.F. Lei, Review on impedance detection of cellular responses in micro/nano environment. Micromachines 2014, 5, 1–12.

    Google Scholar 

  3. H. Andersson, A. van den Berg, Microfluidic devices for cellomics: A review. Sens Actuators B 2003, 92, 315–325.

    Google Scholar 

  4. C. Zhang, J. Xu, W. Ma, W. Zheng, PCR Microfluidic devices for DNA amplification. Biotech. Advances 2006, 24, 243–284.

    Google Scholar 

  5. P. Pal, K. Sato, Various shapes of silicon freestanding microfluidic channels and microstructures in one-step lithography. J. Micromech. Microeng. 2009, 19, 055003–055013.

    Google Scholar 

  6. F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Francais, Y. Mita, T. Bourouina, Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Mciroelectron. J. 2005, 36(7), 673–677.

    Google Scholar 

  7. M. Esashi, A. Nakano, S. Shoji, H. Hebiguchi, Low-temperature silicon-to-silicon anodic bonding with intermediate low melting point glan. Sens. Actuators A 1990, 23, 931–934.

    Google Scholar 

  8. P. Gravesen, J. Branebjerg, O.S. Jensen, Microfluidics-a review. J. Micromech. Microeng. 1993, 3, 168–182.

    Google Scholar 

  9. A. Luque, J.M. Quero, C. Hibert, P. Fluckiger, A.M. Ganan-Calvo, Integrable silicon microfluidic valve with pneumatic action. Sens. Actuators A 2005, 118(1), 144–151.

    Google Scholar 

  10. Y. Li, T. Pfohl, J.H. Kim, M. Yasa, Z. Wen, M.W. Kim, C.R. Safinya, Selective surface modification in silicon microfluidic channel for micromanipulation of biological macromolecules. Biomed. Microdevices 2001, 3(3), 239–244.

    Google Scholar 

  11. N.R. Harris, M. Hill, S. Beeby, Y. Shen, N.M. White, J.J. Hawkes, W.T. Coakley, A silicon microfluidic ultrasonic separator. Sens. Actuators B 2003, 95, 425–434.

    Google Scholar 

  12. Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184.

    Google Scholar 

  13. H. Becker, U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A 2000, 83(1–3), 130–135.

    Google Scholar 

  14. U.M. Attia, S. Marson, J.R. Alcock, Micro-injection moulding of polymer microfluidic devices. Microfluid. Nanofluid. 2009, 7, 1–28.

    Google Scholar 

  15. K.F. Lei, S. Ahsan, N. Budraa, W.J. Li, J.D. Mai, Microwave bonding of polymer-based substrates for potential encapsulated micro/nano device fabrication. Sens. Actuators A 2004, 114(2–3), 340–346.

    Google Scholar 

  16. C.W. Tsao, D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 2009, 6, 1–16.

    Google Scholar 

  17. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000, 288, 113–116.

    Google Scholar 

  18. H. Becker, L.E. Locascio, Polymer microfluidic devices. Talanta 2002, 56(2), 267–287.

    Google Scholar 

  19. B. Kuswandi, Nuriman, J. Huskens, W. Verboom, Optical sensing systems for microfluidic devices: A review. Anal. Chim. Acta 2007, 601(2), 141–155.

    Google Scholar 

  20. S.E. McCalla, A. Tripathi, Microfluidic reactors for diagnostics applications. Annu. Rev. Biomed. Eng. 2011, 13, 321–343.

    Google Scholar 

  21. G.M. Whitesides, The origins and the future of microfluidics. Nature 2006, 442, 368–373.

    Google Scholar 

  22. A.W. Martinez, S.T. Phillips, G.M. Whitesides, Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 2010, 82(1), 3–10.

    Google Scholar 

  23. W. Dungchai, O. Chailapakul, C.S. Henry, Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009, 81, 5821–5826.

    Google Scholar 

  24. A.W. Martinez, S.T. Philips, B.J. Wiley, M. Gupta, G.M. Whitesides, FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip 2008, 8, 2146–2150.

    Google Scholar 

  25. E. Carrilho, A.W. Martinez, G.M. Whitesides, Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem. 2009, 81, 7091–7095.

    Google Scholar 

  26. Y. Lu, W. Shi, L. Jiang, J. Qin, B. Lin, Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 2009, 30, 1497–1500.

    Google Scholar 

  27. D.A. Bruzewicz, M. Reches, G.M. Whitesides, Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal. Chem. 2008, 80, 3387–3392.

    Google Scholar 

  28. X. Li, J. Tian, T. Nguyen, W. Shen, Paper-based microfluidic devices by plasma treatment. Anal. Chem. 2006, 80, 9131–9134.

    Google Scholar 

  29. W. Zhao, M.M. All, S.D. Aguirre, M.A. Brook, Y. Li, Paper-based bioassays using gold nanoparticle colorimetric probes. Anal. Chem. 2008, 80, 8431–8437.

    Google Scholar 

  30. A.K. Ellerbee, S.T. Phillips, A.C. Siegel, K.A. Mlrica, A.W. Martinez, et al., Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal. Chem. 2009, 81, 8447–8452.

    Google Scholar 

  31. D. Zang, L. Ge, M. Yan, X. Song, J. Yu, Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem. Commun. 2012, 48, 4683–4685.

    Google Scholar 

  32. Z. Nie, C.A. Nijhuis, J. Gong, X. Chen, A. Kumachev, et al., Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2009, 10, 477–483.

    Google Scholar 

  33. C.M. Cheng, A.W. Martinez, J. Gong, C.R. Mace, S.T. Phillips, et al., Paper-based ELISA. Angew. Chem. Int. Ed. 2010, 49, 4771–4774.

    Google Scholar 

  34. R.C. Murdock, L. Shen, D.K. Griffin, N. Kelley-Loughnane, I. Papautsky, et al., Optimization of a paper-based ELISA for a human performance biomarker. Anal. Chem. 2013, 85, 11634–11642.

    Google Scholar 

  35. H.K. Wang, C.H. Tsai, K.H. Chen, C.T. Tang, J.S. Leou, et al., Cellulose-based diagnostic devices for diagnosing serotype-2 dengue fever in human serum. Adv. Healthcare Mater. 2013, 3(2), 187–196.

    Google Scholar 

  36. S. Wang, L. Ge, X. Song, J. Yu, S. Ge, et al., Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 2012, 31, 212–218.

    Google Scholar 

  37. D. Erickson, X. Liu, U. Krull, D. Li, Electrokinetically Controlled DNA hybridization microfluidic chip enabling rapid target analysis. Anal. Chem. 2004, 76, 7269–7277.

    Google Scholar 

  38. G.B. Lee, S.H. Chen, G.R. Huang, W.C. Sung, Y.H. Lin, Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens. Actuators B 2001, 75(1–2), 142–148.

    Google Scholar 

  39. L. Wang, P.C.H. Li, Microfluidic DNA microarray analysis: A review. Anal. Chim. Acta 2011, 687, 12–27.

    Google Scholar 

  40. X. Weng, H. Jiang, D. Li, Microfluidic DNA hybridization assays. Microfluid. Nanofluid. 2011, 11, 367–383.

    Google Scholar 

  41. K.F. Lei, H. Cheng, K.Y. Choy, L.M.C. Chow, Electrokinetic DNA concentration in micro systems. Sens. Actuators A 2009, 156, 381–387.

    Google Scholar 

  42. Y. He, M. Tsutsui, C. Fan, M. Taniguchi, T. Kawai, Gate manipulation of DNA capture into nanopores. ACS Nano 2011, 5, 8391–8397.

    Google Scholar 

  43. A.H. Diercks, A. Ozinsky, C.L. Hansen, J.M. Spotts, D.J. Rodriguez, A. Aderem, A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal. Biochem. 2009, 386, 30–35.

    Google Scholar 

  44. K.F. Lei, Quantitative electrical detection of immobilized protein using gold nanoparticles and gold enhancement on a biochip. Meas. Sci. Technol. 2011, 22, 105802.

    Google Scholar 

  45. M. Hervas, M.A. Lopez, A. Escarpa, Electrochemical immunosensing on board microfluidic chip platforms. TrAC Trends Anal. Chem. 2012, 31, 109–128.

    Google Scholar 

  46. A.H.C. Ng, U. Uddayasankar, A.R. Wheeler, Immunoassays in microfluidic systems. Anal. Bioanal. Chem. 2010, 397, 991–1007.

    Google Scholar 

  47. A. Bhattacharyya, C.M. Klapperich, Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomed. Microdevices 2007, 9, 245–251.

    Google Scholar 

  48. F.T.G. van den Brink, E. Gool, J.P. Frimat, J. Borner, A. van den Berg, S. Le Gac, Parallel single-cell analysis microfluidic platform. Electrophoresis 2011, 32, 3094–3100.

    Google Scholar 

  49. R.N. Zare, S. Kim, Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 2010, 12, 187–201.

    Google Scholar 

  50. M.H. Wu, S.B. Huang, G.B. Lee, Microfluidic cell culture systems for drug research. Lab Chip 2010, 10, 939–956.

    Google Scholar 

  51. K.F. Lei, P.H.M. Leung, Microelectrode array biosensor for the detection of Legionella pneumophila. Microelectron. Eng. 2012, 91, 174–177.

    Google Scholar 

  52. K.F. Lei, M.H. Wu, C.W. Hsu, Y.D. Chen, Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Biosens. Bioelectron. 2014, 51, 16–21.

    Google Scholar 

  53. A.W. Adamson. Physical Chemistry of Surface, Wiley, New York, 1990.

    Google Scholar 

  54. R.K. Iler. The Chemistry of Silica, Wiley, New York, 1979.

    Google Scholar 

  55. E.M. Liston, L. Martinu, M.R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review. J Adhesion Sci. Tech. 1993, 7(10), 1091–1127.

    Google Scholar 

  56. C. Oehr, Plasma surface modification of polymers for biomedical use. Nucl. Instrum. Meth. Phys. Res. B 2003, 208, 40–47.

    Google Scholar 

  57. L.S. Jang, W.H. Kan, Peristaltic piezoelectric micropump system for biomedical applications. Biomed. Microdevices 2007, 9, 619–626.

    Google Scholar 

  58. F. Amirouche, Y. Zhou, T. Johnson, Current micropump technologies and their biomedical applications. Microsyst. Tech. 2009, 15, 647–666.

    Google Scholar 

  59. S. Zeng, B. Li, X. Su, J. Qin, B. Lin, Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 2009, 9, 1340–1343.

    Google Scholar 

  60. K.W. Oh, C.H. Ahn, A review of microvalves. J Micromech. Microeng. 2006, 16, R13–R39.

    Google Scholar 

  61. B. Zhao, J.S. Moore, D.J. Beebe, Surface-directed liquid flow inside microchannels. Science 2001, 291, 1023–1026.

    Google Scholar 

  62. B. Zhao, J.S. Moore, D.J. Beebe, Pressure-sensitive microfluidic gates fabricated by patterning surface free energies inside microchannels. Langmuir 2003, 19, 1873–1879.

    Google Scholar 

  63. B. Zhao, J.S. Moore, D.J. Beebe, Principles of surface-directed liquid flow in microfluidic channels. Anal. Chem. 2002, 74(16), 4259–4268.

    Google Scholar 

  64. H. Chen, M.A. Brook, H. Sheardown, Silicon elastomers for reduced protein adsorption. Biomaterials 2004, 25, 2273–2282.

    Google Scholar 

  65. F. Abbasi, H. Mirzadeh, Adhesion between modified and unmodified poly(dimethylsiloxane) layers for a biomedical application. Int. J. Adhes. Adhes. 2004, 24, 247–257.

    Google Scholar 

  66. H. Makambe, J.H. Kim, K. Lim, N. Park, J.H. Hahn, Surface modification of poly(dimethyl siloxane) microchannels. Electrophoresis 2003, 24, 3607–3619.

    Google Scholar 

  67. S. Pinto, P. Alves, C.M. Matos, A.C. Santos, L.R. Rodrigues, J.A. Texeira, M.H. Gil, Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloid Surface B 2010, 81, 20–26.

    Google Scholar 

  68. S. Sugiura, J. Edahiro, K. Sumaru, T. Kanamori, Surface modification of poly dimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion. Colloids Surface B 2008, 63, 301–305.

    Google Scholar 

  69. W. Hellmich, J. Regtmeier, T.T. Duong, R. Ros, D. Anselmetti, A. Ros, Poly(oxyethylene) based surface coatings for poly(dimethylxiloxane) microchannels. Langmuir 2005, 21, 7551–7557.

    Google Scholar 

  70. Vassanelli, S.; Fromherz, P. Transistor probes local potassium conductances in the adhesion region of cultured rat hippocampal neurons. J. Neurosci. 1999, 19, 6767–6773.

    Google Scholar 

  71. Davis, D. H.; Giannoulis, C. S.; Johnson, R. W.; Desai, T. A. Immobilization of RGD to < 111 > silicon surfaces for enhanced cell adhesion and proliferation. Biomaterials 2002, 23, 4019–4027.

    Google Scholar 

  72. V. Gribova, C. Gauthier-Rouviere, C. Albiges-Rizo, R. Auzely-Velty, C. Picart. Effect of RGD functionalization and stiffness modulation of polyelectrolyte multilayer films on muscle cell differentiation. Acta Biomaterialia. 2013, 9, 6468–6480.

    Google Scholar 

  73. L. Richert, P. Lavalle, D. Vautier, B. Senger, J.F. Stoltz, P. Schaaf, et al., Cell interactions with polyelectrolyte multilayer films. Biomacromolecules 2002, 3(6), 1170–1178.

    Google Scholar 

  74. B. Cao, S. Yan, K. Zhang, Z. Song, X. Chen, L. Cui, et al., Layer-by-layer assembled multilayer films of methoxypoly(ethylene glycol)-block-poly(alpha, l-glutamic acid) and chitosan with reduced cell adhesion. Macromolecular Biosci. 2011, 11(9), 1211–1217.

    Google Scholar 

  75. Z.R. Wu, J. Ma, B.F. Liu, Q.Y. Xu, F.Z. Cui, Layer-by-layer assembly of polyelectrolyte films improving cytocompatibility to neural cells. J. Biomed. Mater. Res. A 2007, 81 A, 355–362.

    Google Scholar 

  76. L. Richert, P. Lavalle, D. Vautier, B. Senger, J.F. Stoltz, et al., Cell interactions with polyelectrolyte multilayer films. Biomacromolecules 2002, 3, 1170–1178.

    Google Scholar 

  77. L. Richert, A. Youri, P. Schaar, J.C. Voegel, C. Picart, pH dependent growth of poly(L-lysine)/poly(L-glutamic) acid multilayer films and their cell adhesion properties. Surf. Sci. 2004, 570, 13–29.

    Google Scholar 

  78. L. Richert, A. Schneider, D. Vautier, C. Voduouhe, N. Jessel, et al. Imaging cell interactions with native and crosslinked polyelectrolyte multilayers. Cell Biochem. Biophys. 2006, 44, 273–285.

    Google Scholar 

  79. K. Zhou, G.Z. Sun, C.C. Bernard, G.A. Thouas, D.R. Nisbet, et al., Optimizing interfacial features to regulate neural progenitor cells using polyelectrolyte multilayers and brain derived neurotrophic factor. Biointerphases 2011, 6, 187–199.

    Google Scholar 

  80. J. Almodóvar, S. Bacon, J. Gogolski, J.D. Kisiday, M.J. Kipper, Polysaccharide-based polyelectrolyte multilayer surface coatings can enhance mesenchymal stem cell response to adsorbed growth factors. Biomacromolecules 2010, 11, 2629–2639.

    Google Scholar 

  81. R. A McAloney, M. Sinyor, V. Dudnik, M.C. Goh, Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology. Langmuir 2001, 17, 6655–6663.

    Google Scholar 

  82. D. Yoo, S.S. Shiratori, M.F. Rubner, Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 1998, 31, 4309–4318.

    Google Scholar 

  83. J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, et al., Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal. Chem. 2002, 74, 2994–3004.

    Google Scholar 

  84. A. Bernard, B. Michel, E. Delamarche, Micromosaic Immunoassays. Anal. Chem. 2001, 73, 8–12.

    CrossRef  Google Scholar 

  85. M. Schaeferling, S. Schiller, H. Paul, M. Kruschina, P. Pavlickova, et al., Application of self-assembly techniques in the design of biocompatible protein microarray surfaces. Electrophoresis 2002, 23, 3097–3105.

    Google Scholar 

  86. C.H. Yeh, W.T. Wang, P.L. Shen, Y.C. Lin, A developed competitive immunoassay based on impedance measurements for methamphetamine detection. Microfluid. Nanofluid. 2012, 13, 319–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin Fong Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lei, K., Lee, IC., Lei, T. (2015). Microfluidic Systems with Functional Patterned Surface for Biomedical Applications. In: Rodríguez-Hernández, J., Cortajarena, A. (eds) Design of Polymeric Platforms for Selective Biorecognition. Springer, Cham. https://doi.org/10.1007/978-3-319-17061-9_11

Download citation