Skip to main content

Abstract

Topologically equivalent attractor reconstruction is one of the major issues in nonlinear analysis. This is because of the fact that the underlying dynamical model of some nonlinear phenomena may not be known and thus it is necessary to retrieve the dynamics from the data it generates. One way to achieve this is the reconstruction of the attractor. The basis of such reconstruction is the famous Taken’s embedding theorem, which asserts that an equivalent phase space trajectory,preserving the topological structures of the original phase space trajectory, can be reconstructed by using only one observation of the time series. However, in some cases topologically equivalent attractor reconstructions can also be done by using multiple observations. All these things involve the choice of suitable time-delay(s) and embedding dimension. Various measures are available to find out the suitable time-delay(s). Among them, linear auto-correlation, Average mutual information, higher dimensional mutual information are mostly used measures for the reconstruction of the attractors. Every measures have certain limitations in the sense that they are not always useful in finding suitable time-delay(s). Thus it is necessary to introduce few more nonlinear measures, which may be useful if the aforesaid measures fail to produce suitable time-delay/time-delays. In this chapter, some comparatively new nonlinear measures namely generalized auto-correlation, Cross auto-correlation and a new type of nonlinear auto-correlation of bivariate data for finding suitable time-delay(s) have been discussed. To establish their usefulness, attractors of some known dynamical systems have been reconstructed from their solution components with suitable time-delay(s) obtained by each of the measures. These attractors are then compared with their corresponding original attractor by a shape distortion parameter Sd. This shape distortion parameter actually checks how much distorted the reconstructed attractor is from its corresponding original attractor. The main objective of this chapter is to address the problem of reconstruction of a least distorted topologically equivalent attractor. The reason is that if the reconstructed attractor is least distorted from its original one, the dynamics of the system can be retrieved more accurately from it. This would help in identifying the dynamics of the corresponding system, even when the dynamical model is not known. Out of the three measures discussed in this chapter, the generalized and cross auto-correlation measures produce least distorted topologically equivalent attractor only by consideration of multiple solution components of the dynamical system. On the other hand, by using the measure—new type of nonlinear auto-correlation of bivariate data, one can reconstruct a least distorted topologically attractor from single solution component of the dynamical system. Various numerical results on Lorenz system, Neuro-dynamical system and also on two real life signals are presented to prove the effectiveness of the aforesaid three comparatively new nonlinear time-delay finding measures. Finding of suitable embedding dimension is another important issue for attractor reconstruction. However, this issue has not been highlighted in this chapter because we have restricted this discussion only to three dimensional attractor reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams, G.P.: Chaos Theory Tamed. Joseph Henry Press, Washington, DC (1997)

    MATH  Google Scholar 

  2. Kaplan, D.T., Glass, L.: Understanding Nonlinear Dynamics. Springer, New York (1995)

    Book  MATH  Google Scholar 

  3. Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1997)

    Google Scholar 

  4. Kaplan, D.T.: Signal Processing. Warwick-exercises.tex, 5–9 (2004)

    Google Scholar 

  5. Glass, L., Mackey, M.C.: From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton (1988)

    MATH  Google Scholar 

  6. Strogatz, S.H.: Non Linear Dynamics and Chaos-with Application to Physics, Biology, Chemistry and Engineering. Advance Book Program (Persueus Books), Cambridge (1994)

    Google Scholar 

  7. Banbrook, M., McLaughlin, S.: Is Speech Chaotic? Invariant Geometrical Measures for Speech Data. IEE Colloq. Exploit. Chaos Signal Process. 193, 1–8 (1994)

    Google Scholar 

  8. McLaughlin, S., Banbrook, M., Mann, I.: Speech characterization and synthesis by nonlinear methods. IEEE Trans. Speech Audio Process. 7, 1–17 (1999)

    Article  Google Scholar 

  9. Johnson, T.L., Dooley, K.: Looking for chaos in time series data. In: Sulis, W., Combs, A. (eds.) Nonlinear Dynamics in Human Behavior, pp. 44–76. World Scientific, Singapore (1996)

    Chapter  Google Scholar 

  10. Kugiumtzis, D.: State space reconstruction parameters in the analysis of chaotic time series’ the role of the time window length. Physica D 95, 13 (1996)

    Article  ADS  MATH  Google Scholar 

  11. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S. (eds.) Dynamical Systems and Turbulence. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  12. Sauer, T., Yorke, J., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579–616 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Gibson, J.F., Farmer, J.D., Casdagli, M., Eubank, S.: An analytic approach to practical state space reconstruction. Physica D 57, 1–30 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Kantz, H., Olbrich, E.: Scalar observations from a class of high-dimensional chaotic systems: limitations of the time delay embedding. Chaos 7(3), 423 (1997)

    Article  ADS  MATH  Google Scholar 

  15. Olbrich, E., Kantz, H.: Inferring chaotic dynamics from time-series: on which length scale determinism becomes visible. Phys. Lett. A 232, 63 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Pecora, L.M., Moniz, L., Nichols, J., et al.: A unified approach to attractor reconstruction. Chaos 17, 013110 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  18. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Wolf, A.: Quantity chaos with Lyapunov exponents. In: Holden, A.V. (ed.) Chaos, pp. 273–290. Princeton University Press, New Jersey (1986)

    Google Scholar 

  20. Benettin, B., Galgani, L., Giorgilli, A., Strelcyn, J.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems: a method for computing all of them Part I, II. Meccanica 15(1), 9–30 (1980)

    Article  ADS  MATH  Google Scholar 

  21. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Detennining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Eckmann, J.P., Kamphorst, S.O., Ruelle, D., Ciliberto, S.: Lyapunov exponents from time series. Phys. Rev. A 34, 4971–4979 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sano, M., Sawada, Y.: Measurement of the Lyapunov spectrum from a chaotictime series. Phys. Rev. Lett. 55, 1082–1085 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  24. Peitgen, H., Jurgens, H., Saupe, D.: Chaos and Fractals-New Frontiers of Science. Springer, New York (1996)

    Google Scholar 

  25. Banbrook, M., Ushaw, G., McLaughlin, S.: How to extract Lyapunov exponents from short and noisy time series. IEEE Trans. Signal Process. 45, 1378–1382 (1997)

    Article  ADS  Google Scholar 

  26. Geist, K., Parlitz, U., Lauterbom, W.: Comparison of different methods for computing Lyapunov exponents. Prog. Theor. Phys. 83, 875 (1990)

    Article  ADS  MATH  Google Scholar 

  27. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77–87 (1994)

    Article  ADS  Google Scholar 

  28. Kennedy, M.P.: Basic concepts of nonlinear dynamics and chaos. In: Toumazou, C. (ed.) Circuits and Systems Tutorials, pp. 289–313. IEEE Press, London (1994)

    Google Scholar 

  29. Briggs, K.: An improved method for estimating Liapunov exponents of chaotic time series. Phys. Lett. A 151, 27–32 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  30. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)

    Article  ADS  Google Scholar 

  31. Abarbanel, H.D.I., Carroll, T.A., Pecora, L.M., Sidorowich, J.J., Tsimring, L.S.: Predicting physical variables in time delay embedding. Phys. Rev. E 49, 1840–1853 (1994)

    Article  ADS  Google Scholar 

  32. Guckenheimer, J., Buzyna, G.: Dimension measurements for geostrophic turbulence. Phys. Rev. Lett. 51, 1438–1441 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  33. Palus, M., Dvorák, I., David, I.: Spatio-temporal dynamics of human EEG. Physica A 185, 433–438 (1992)

    Article  ADS  Google Scholar 

  34. Cao, L., Mees, A., Judd, K.: Dynamics from multivariate time series. Physica D 121, 75–88 (1998)

    Article  ADS  MATH  Google Scholar 

  35. Barnard, J.P., Aldrich, C., Gerber, M.: Embedding of multidimensional time-dependent observations. Phys. Rev. E 64, 046201 (2001)

    Article  ADS  Google Scholar 

  36. Garcia, S.P., Almeida, J.S.: Multivariate phase space reconstruction by nearest neighbor embedding with different time delays. Phys. Rev. E 72, 027205 (2005)

    Article  ADS  Google Scholar 

  37. Hirata, Y., Suzuki, H., Aihara, K.: Reconstructing state spaces from multivariate data using variable time delays. Phys. Rev. E 74, 026202 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining minimum embedding dimension using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)

    Article  ADS  Google Scholar 

  40. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110, 43–50 (1997)

    Article  ADS  MATH  Google Scholar 

  41. Kember, G., Fowler, A.C.: A correlation function for choosing time delays in phase portrait reconstructions. Phys. Lett. A 179, 72–80 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  42. Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A 34, 2427–2432 (1986)

    Article  ADS  Google Scholar 

  43. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  44. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Liebert, W., Schuster, H.G.: Proper choice of time delay for the analysis of chaotic time series. Phys. Lett. A 142, 107 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  46. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  47. Simon, G., Verleysen, M.: High-dimensional delay selection for regression models with mutual information and distance-to-diagonal criteria. Neurocomputing 70, 1265–1275 (2007)

    Article  Google Scholar 

  48. Lorentz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  49. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  ADS  Google Scholar 

  50. Vlachos, I., Kugiumtzis, D.: Non uniform state-space reconstruction and coupling detection. Phys. Rev. E 82, 016207 (2010)

    Article  ADS  Google Scholar 

  51. Palit, S.K., Mukherjee, S., Bhattacharya, D.K.: New types of nonlinear auto-correlations of bivariate data and their applications. Appl. Math. Comput. 218(17), 8951–8967 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  52. Palit, S.K., Mukherjee, S., Bhattacharya, D.K.: Generalized auto-correlation and its application in attractor reconstruction. Bull. Pure Appl. Math. 5(2), 218–230 (2011)

    MathSciNet  Google Scholar 

  53. Palit, S.K., Mukherjee, S., Bhattacharya, D.K.: A high dimensional delay selection for the reconstruction of proper phase space with cross auto-correlation. Neurocomputing 113, 49–57 (2013)

    Article  Google Scholar 

  54. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980–994 (1995)

    Article  ADS  Google Scholar 

  55. Marchal, C.: Determinism, random, chaos, freedom. Henri Poincare and the revolution of scientific ideas in the twentieth century. Regul. Chaotic Dyn. 10, 227–236 (2005)

    MATH  MathSciNet  Google Scholar 

  56. Wichard, J.D., Parltz, U., Lauterborn, W.: Application of nearest neighbor’s statistics. In: International Symposium on Nonlinear Theory and Its Applications, Switzerland (1998)

    Google Scholar 

  57. Martinez, W.L., Martinez, A.R.: Computational Statistics Handbook with Matlab. Chapman & Hall/CRC, New York (2002)

    Google Scholar 

  58. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.: Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94 (1992)

    Article  ADS  MATH  Google Scholar 

  59. Schreiber, T., Schmitz, A.: Improved Surrogate Data for Nonlinearity Tests. Phys. Rev. Lett. 77, 635 (1996)

    Article  ADS  Google Scholar 

  60. Jar, J.H.: Biostatistical Analysis. Pearson International Edition, Harlow (2006)

    Google Scholar 

  61. Das, A., Roy, A.B.: Chaos in a three dimensional neural network. Appl. Math. Model. 24, 511–522 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Palit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palit, S.K., Mukherjee, S., Banerjee, S., Ariffin, M.R.K., Bhattacharya, D.K. (2015). Some Time-Delay Finding Measures and Attractor Reconstruction. In: Banerjee, S., Rondoni, L. (eds) Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 4. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-17037-4_7

Download citation

Publish with us

Policies and ethics